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Abstract
Exceeding the performance limits of current application filtering systems, both in terms of speed
and versatility in supporting sophisticated filtering policies, is a highly topical issue in cybersecurity
environments. Systems built for specific uses are fast but have limited filtering functions, and, on the
other side, systems that adopt efficient semantics fail to meet performance requirements in terms of
speed. This work aims to propose a novel mechanism for solving the problem of the optimal ordering
of filtering policies in a firewall, to reduce the number of times the generic rule is evaluated, and thus
having better efficiency from the point of view of time processing, as well as the speed of the filtering
action. The proposed approach uses a genetic algorithm and involves combining two heuristics for
managing mutually dependent policies. The results are encouraging in terms of both performance and
timing.
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1. Introduction

The packet filtering operation of a Firewall (FW) may require high computation times, which
grow as the complexity of the implemented Security Policy (SP) increases. This could be
particularly disadvantageous in scenarios in which fast communications must be guaranteed,
for example, in Gigabit Ethernet networks, up to situations in which the system is susceptible to
Denial of Service (DoS) [1] attacks. Attacks of this type could exploit the high latency of systems
that are not optimal in terms of time processing capacity. It is therefore required to introduce
procedures to remove the anomalies present in an SP, using the most common techniques
well-argued and proposed by the authors of [2, 3]. However, as noted by these authors, in some
cases, these techniques may not be sufficient, and it is consequently necessary to perform a
targeted sorting of the rules that make up the SP. In the last decade, the problem of optimizing
the ordering of the rules present in an SP, to minimize the number of times the generic rule
is evaluated, as well as the time processing in the filtering action, has led to several works by
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researchers [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
This work presents an innovative approach compared to those in the existing literature to be
very efficient in terms of execution time, even for very complex and extensive SPs. For the latter
analysis, the time complexity analysis methods proposed in [16] will be employed. A genetic
algorithm for efficiently ordering the policies of a FW is described, with a particular focus on
the problem of constrained ordering, not to modify the SP’s correct functioning.
The main contributions of the present work are:

• Proposal of a genetic approach for the problem of sorting the SPs of a FW;
• Introduction of heuristics for solving a constrained sorting problem that establishes

the correct positioning of placeholders in the sequence to be sorted, with consequent
reduction of the application space of the genetic algorithm, in order to grant efficient
execution times;

• Presentation of innovative mechanisms in the crossover and mutation phases of the
adopted genetic algorithm to make the proposed solution more efficient.

The paper is organized as follows: section 2 provides a context analysis of the problem under
consideration; section 3 presents a review of the approaches used in the literature to address
the same problem; section 4 describes the solution to the problem and its two phases; section 5
provides a comparison of the proposed heuristics for solving the constraints, compared to a
topological ordering, as well as a first examination of the results obtained from the application
of the whole proposed algorithm about its time complexity as the complexity of the considered
ruleset varies. Conclusions and possible future directions are presented in section 6.

2. Background

A FW uses a list of filtering rules that act on packets of traffic generated in and out of a computer
network. An example of such a list is presented in Table 1. A SP is ordered and can be expressed

ID Action Direction Protocol Source Destination Destination Port
0 Block In Any 10.1.1.1 20.1.1.1 Any
1 Pass In [TCP, UDP] 192.168.56.3 Any Any
2 Block Out UDP 10.0.0.8 Any 53
3 Pass In TCP 172.12.0.98 Any Any
4 Block In CARP 10.0.0.0/8 Any Any
5 Block In TCP 192.168.41.78 192.168.41.79 Any
6 Block Out Any 10.0.0.0/8 Any Any
7 Forward In Any 172.12.0.0/16 Any Any
8 Block Out Any 10.0.0.0/8 Any Any
9 Pass In TCP 10.1.1.2 20.1.1.1 80
10 Pass In TCP 10.1.1.0/24 20.1.1.1 80
11 Block Any Any Any Any Any

Table 1
Example of a SP

as R = (𝑟0, 𝑟1, ..., 𝑟𝑁 ), where 𝑁 is the number of rules that compose it.



Formally, a rule can be modeled as an n-uple 𝑟𝐼𝐷 = (Σ𝐼𝐷, [𝛼1, 𝛼2, ..., 𝛼𝑘]), where 𝛼𝑖, with
𝑖 = 1, ..., 𝑘 represents the generic attribute (token) typical of network traffic, while Σ𝐼𝐷

represents the filtering action to be taken.
As noted earlier, ordering the rules within the SP affects packet filtering performance, which is
why optimal ordering criteria need to be introduced.
The goal is to sort the FW rules to reduce the number of evaluations of each individual rule,
lightening the matching phase overall. Assuming that a SP is composed of 𝑁 rules, each packet
will be compared sequentially with the first, second, and then 𝑗-th rule until it reaches the
rule that handles it. The matching phase is interrupted at this stage, and the filtering action is
undertaken. If a packet matches a rule at the bottom of the list, it will be compared 𝑁 times
(typical catch-all rule), i.e., with all the rules in the SP. Therefore it is advisable to order the rules
so that the most frequent ones are placed in the initial positions, and the less frequent ones
are placed in the last positions, so each rule is associated with a weight given by its activation
frequency.
The problem is not one of simple ordering since there are rules that cannot be postponed because
if they were, the integrity of the SP could be altered. So, the first process to implement is to
verify that the rules are strictly disjoint, i.e., that their intersection returns an empty set. Let
then define the concept of dependent rules.

Definition 2.1 (Dependent rules). Two filtering rules 𝑟1 and 𝑟2 are said to be dependent if and
only if the following conditions are met:

1. 𝑟1 and 𝑟2 are not disjointed;
2. Σ1 ̸= Σ2

If definition 2.1 is satisfied, then the two rules are subject to a precedence constraint, and so
their order cannot be changed.
For example, consider the SP in Table 1. From the analysis of the dependency relations between
the rules in the list, it is possible to derive the precedence constraints expressed in Table 2,
inferred from the dependency relations.

ID Precedence constraints
0 [0 → 10]
1 [1 → 8]; [1 → 11]
2 ∅
3 [3 → 7]; [3 → 11]
4 ∅
5 ∅
6 ∅
7 [7 → 11]
8 ∅
9 [9 → 11]
10 [10 → 11]

Table 2
Precedence constraints derived from SP in Table 1



For example, constraint [0 → 10] is derived from that Σ0 ̸= Σ10 and between each attribute
the intersection is not empty, indeed:

• 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛0 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛10;
• 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙10 ⊂ 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙0;
• 𝑆𝑜𝑢𝑟𝑐𝑒0 ⊂ 𝑆𝑜𝑢𝑟𝑐𝑒10, so 10.1.1.1 ∈ 10.1.1.0/24, being 10.1.1.0/24 = [10.1.1.0, 10.1.1.255];
• 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛0 = 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛10;
• 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑟𝑡10 ⊂ 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑟𝑡0.

In any process that tends to change the order of the rules in the list, these constraints must be
taken into account to maintain the integrity of the SP.

3. Related Work

Fulp et al. [5] showed how the optimal rule ordering problem of a FW, considering the integrity
of the SP, has a complexity equivalent to the job scheduling problem with precedence constraints
for single-processor systems. It is, thus, a problem of complexity NP-Hard.
The authors of [1] introduce an SP representation technique that improves packet filtering
performance while maintaining the integrity of the implemented policy. However, this approach
is unpromising about generic SP modification operations (e.g., simply adding a new rule), which
leads to the creation of a new representation, thus making this technique underperforming in
handling dynamic policies.
The dynamic sorting problem is addressed by Hamed et al. [4], who present a technique that
tracks the statistical characteristics of the current network traffic, aiming to perform optimal
dynamic ordering of the SP through the Optimal firewall Rule Ordering (ORO) heuristic.
Alternative modeling of the problem is provided by the authors of [10]. They introduce the
RORO (Relaxed Optimal Rule Ordering) problem, addressed through a local search algorithm
such as Simulated Annealing [13]. In the latter work, constraints are modeled using ZDDs
(Zero-suppressed binary Decision Digrams).
Typically, the optimal rule ordering problem of a FW is expressed as a Binary Integer Program-
ming (BIP) optimization problem, for which it has been shown that the application of Branch
and Bound (BB) approaches can give an optimal solution. An alternative approach to solving
the same problem, based on the use of genetic algorithms, is proposed in [8], showing that the
results obtained are comparable to those of the BB technique.
Starting from this previous research, it has been considered the possibility to extend the genetic
approach, exploiting its potentiality and high flexibility. The purpose is to make this technique
scalable to very complex SP, reducing the space of application of the algorithm to placeholders
to be placed in defined positions following the resolution of the constraints; which is obtained
through a direct acyclic graph (DAG), in turn resolved using the introduction of a hierarchical
ordering heuristic.

4. Solution Design

The proposed algorithm addresses an optimization problem of a constrained ordering, having as
goal to minimize the number of times the rule is evaluated, through the application of a Genetic



Algorithm (GA) acting with appropriate application criteria and leading to minimizing a fitness
function thus modeled:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑁∑︁
𝑖

𝑖𝑓𝑖 (1)

where 𝑖 denotes the positional index of the 𝑖-th rule, while 𝑓𝑖 represents the frequency of its
activation, typically modeled by a probability distribution function from an a priori measurement
of network traffic.

4.1. Genetic algorithms background

In a GA, the set of potential solutions to the problem is represented as a population of chromo-
somes. For the problem under examination, the integer encoding indicative of the positional
indices of each rule was chosen to correspond to the starting sorting, while the generic place-
holder is encoded with a fictitious value.
The algorithm starts from a random population, which must represent different points belonging
to the search space of the possible solutions.
The fitness function assigns a score to every chromosome corresponding to the running popula-
tion. Such a score indicates the chromosome’s goodness as a solution to the problem.
Chromosome selection is performed on the current population according to this score. Chro-
mosomes with a higher fitness function value have a higher probability of being selected. The
selection is performed using probabilistic methods and belongs to the theory of evolutionary
computation [17]. The proposed application uses the selection mechanism based on the roulette
wheel method.
In the recombination phase, chromosome pairs are extracted and paired according to the extrac-
tion order. This operation is applied in correspondence with a cut point. Each pair is decided
with a certain probability (crossover rate) of whether to perform the crossover. The crossover
operation exchanges the sub-sequence of the two paired individuals according to a certain cut
point. If the parts to the left of the cut point are identical, then the crossover has no effect.
Once the recombination is complete, a mutation is performed, with a probability defined by the
mutation rate. From the optimization process point of view, this procedure is fundamental to
avoid the algorithm getting stuck in correspondence with an optimal local case. At this step,
the generation is finished, and therefore the value of the fitness function obtained is calculated
and compared with the previous value. The batch of chromosomes with the best-desired fitness
score is then maintained.
Generations can go on indefinitely, but in practical terms, a decision has to be made about
when to stop them and, in general, provide a performance assessment regarding the adoption
of the stop criterion. In this sense, the authors of [17] observe how the stop condition is a
hyperparameter to be adapted to the satisfaction of the faced problem solution. In the proposed
approach, the stop criterion is defined by the attainment of the limiting number of generations,
but further considerations will be evaluated to the possibility of using a criterion that stops the
algorithm after no improvement in the fitness trend has been recorded for a fixed number of
generations.



4.2. Proposed algorithm

The proposed solution consists of two phases. A new heuristic for resolving precedence
constraints is defined in the first phase. In the second phase, the application of genetics
enables optimal placement of constrained rules within the sequence of unconstrained rules.

4.2.1. Constraint resolution

Each precedence relation is defined as a [ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙] pair, where ℎ𝑒𝑎𝑑 refers to the positional
index of the rule that must precede the rule identified by the 𝑡𝑎𝑖𝑙 index. Given such modeling,
resolution of precedence relationships is accomplished by using a DAG. Each node in the graph
represents the positional index of the generic rule, and arcs represent the precedence relations
between nodes.

Heuristic 4.1 (Longest path criterion). Let the following set of paths (depth) of the generic
DAG be considered:

𝐷 = {𝑑0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑎

𝑏

𝑐

𝑑

𝑒

, 𝑑1 =

⎧⎪⎨⎪⎩
𝑎

𝑏

𝑐

, . . . , = 𝑑𝑛 =

⎧⎪⎨⎪⎩
𝑥

𝑦

𝑧

}

Since 𝑑1 ⊂ 𝑑0 then it is possible to drop 𝑑1 for the longest path criterion. More complex intersec-
tions are handled, and the graphical representation is simplified while preserving the precedence
constraints.

Observe the following example, which takes into account the constraints [3 → 7], [3 →
11], [7 → 11] extracted from Table 2. The application of the proposed criterion is shown in
Table 3.

Without Heuristic 4.1 With Heuristic 4.1

𝑟7

𝑟3

𝑟11

𝑟7 𝑟3

𝑟11

Table 3
Heuristic 4.1 application example

Typically a DAG is resolved using topological ordering algorithms. Techniques of this type
cannot find a global optimal solution, even if they are advantageous from the time complexity



point of view. Consider, for example, an algorithm Depth First Search (DFS) for the resolution of
a DAG. The time complexity turns out to be equal to 𝑂(𝑣+𝑒), where 𝑣 represents the number of
vertices in the graph, while 𝑒 is the number of arcs in the graph. However, for sorting the DAG,
the proposed algorithm combines two heuristics, noting that defining heuristic methods that
lend themselves well to the problem addressed can lead to drastically reduced time complexity
compared to classical methods.
The choice will be strengthened by studying the results obtained by applying the proposed
methodology instead of a topological algorithm and comparing what is obtained with an exhaus-
tive search method, which explores every possible combination that satisfies the constraints
and is a possible solution. The fitness function will give the score of each solution.

Heuristic 4.2 (Hierarchical sorting criterion). The proposed sorting criterion is defined ac-
cording to the hierarchical levels obtained by the DAG construction.

Definition 4.1 (Root nodes). An element of the generic constraint is defined as a root node if
and only if it appears exclusively in the first position.

Observation 4.1. Definition 4.1 remains consistent regardless of the number of constraints in
which the element is root.

By synthesizing a DAG from Table 2, the structure of the layers can be inferred. In particular:

• 𝑟0, 𝑟1, 𝑟3, 𝑟9 are root nodes, or equivalently level 0 nodes;
• 𝑟10, 𝑟8, 𝑟7 are level 1 nodes;
• 𝑟11 is a level 2 node.

Observation 4.2. The level of each node is given by its maximum depth within the graph.

The level representation allows to efficiently infer the ordering to be imposed, to keep the prece-
dence constraints unchanged. In particular, the respected ordering is given by the increasing
order of the levels, and so a first ordering could be given by: 𝑟0, 𝑟1, 𝑟3, 𝑟9, 𝑟10, 𝑟8, 𝑟7, 𝑟11, which
satisfies the constraints given in Table 2. However, as assumed, it would be a possible solution.
The proposed solution foresees moving to the left the deepest level elements (starting from the
right) until a rule that binds the generic element to be moved is reached or until a rule with a
greater weight is met. This allows an order that approaches the global optimum concerning the
problem being faced.
At this point, a placeholder will be associated with each constrained rule.

4.2.2. Genetic Algorithm over placeholders

First, the unconstrained rules are sorted according to their fitness.
The genetic algorithm is then applied to the constrained rules to determine the correct placement
of the placeholders within the ordering and the space that must be maintained between two
contiguous intervals. This drastically reduces the computational effort of the algorithm since,
in general, the constrained rules are in lower cardinality than the unconstrained ones.



For the application of the genetic algorithm, the generic chromosome is composed of the untied
rules, where each gene is associated with the positional index of the rule, and 𝐶 placeholders,
where 𝐶 is the number of constrained rules.
Initially, all placeholders are encoded by a fictitious value and then regain the correct integer
index relative to the rule position at the end of the placement procedure performed by the
GA. Each placeholder must correspond to a position, so a new draw is made if the generic
position has already been assigned. Once the positions of the placeholders have been obtained,
the unbound rules are inserted in the empty spaces. Finally, the fitness of the chromosome is
calculated.

Definition 4.2 (Crossover). The crossover between two chromosomes 𝐴 and 𝐵 consists in ex-
changing the positions of some placeholders of 𝐴 with those of some placeholders of 𝐵.
This is done in the following way:

1. Let 𝐴 and 𝐵 be two chromosomes to be crossovered. It is randomly determined how many
placeholders to swap and what they should be;

2. For each exchange, the placeholder of 𝐴 will be assigned the position of the placeholder of 𝐵
and vice versa.

If the position assigned to a placeholder already belongs to another placeholder, the exchange is not
confirmed, so the crossover is canceled.

Definition 4.3 (Mutation). A mutation consists of assigning a new position to a placeholder.

1. For each chromosome in the population, it is randomly determined how many placeholders
to mutate and what those placeholders should be;

2. For each placeholder to be changed, the new position is drawn and applied.

In some cases, the mutation is not applied. If another constraint already occupies the drawn position,
the mutation has no effect. Moreover, the same constraint may be drawn several times and, therefore,
it will undergo several mutations and keep only the last mutation undergone. Unlike the standard
approach, the mutation operation is applied without using a mutation rate.

5. Results and performance analysis

5.1. Constraints resolution

Starting from the example of ten constrained rules proposed by [8], whose representation is
shown in table 4, a comparison is proposed in the application of the combination of the heuristics
4.1 and 4.2 proposed by the present work, against the application of a topological sorting (TS)
algorithm of DFS type. The obtained results are compared with the best solution, found through
an exhaustive search algorithm, which explores all possible solutions that satisfy the constraints.
The activation frequencies were modeled using a probability distribution function Zipf, which
models the time of interarrival of packets for ordinary network traffic as shown by the authors
of [18].
The exhaustive search algorithm finds 252 possible solutions that satisfy the constraints. The



topological sorting algorithm obtains a solution that ranks 167th, while the algorithm proposed
by this work ranks 31th.
The results are shown in Table 5.
The best solution, obtained through the exhaustive search algorithm, is reported; the 𝜀 difference
in fitness from the best solution is measured for the other solutions.
Algorithm time complexity analyses were performed on an Ubuntu Virtual Machine, Dual-Core,
2GB RAM, hosted with VMWare from a Windows 11 machine, Intel Core i7-8650 CPU @ 1.90
GHz.

ID Precedence Constraints
1 [1 → 2]; [1 → 5]
2 [2 → 6]; [2 → 7]
3 [3 → 4]
4 [4 → 6]; [4 → 9]
5 [5 → 7]
6 [6 → 8]; [6 → 9]
7 [7 → 10]
8 [8 → 10]
9 [9 → 10]

Table 4
DAG Precedence Relationships in [8]

Procedure Fitness 𝜀 #Ranking/252
Best solution 2074 - 1/252
Proposed approach 2203 127 31/252
DFS 2506 432 167/252

Table 5
Constraint resolution results

5.2. Time Complexity

In this section, the results of the algorithm’s performances in its entirety are shown. The aim is
to study the fitness trend to the increase of the number of generations, relating such analysis to
the times of execution necessary to the attainment of the solution held optimal by the algorithm.
The fitness trend in the three experiments shows that as the complexity of the SP increases,
the algorithm requires more generations to converge to the optimal solution. However, in all
experiments, the convergence is fast and requires less than 25% of the total generations.
Corresponding to the average case, i. e. a ruleset composed of 50 rules, the execution time
shows a linear growth. This is confirmed using a model that approximates the trend of this
curve, as shown in Figure 2. Let now consider the most complex case among those proposed.
The following observations can be deduced.
First of all, for a number of generations 𝜂 = 2000, the algorithm takes about 600 · 10−3 seconds
(Figure 1) to find the solution considered as optimal, and this denotes its goodness from the
speed-of-convergence point of view. Even in this case, the trend of execution times is almost



Figure 1: Fitness/Runtime over No. Generations for different SP Complexity

Figure 2: Linear Time Complexity for a SP of 50 Rules

linear.
It has been experimentally observed that, on many repeated experiments on a ruleset of 100
rules, the algorithm finds the optimal solution in correspondence of a generation belonging to
the narrow circle of generation 500. It can be assumed that the fitting would be perfectly linear
by adopting the following stopping criterion: stop the algorithm if no fitness improvements are
obtained for a certain number 𝜅 of generations. In this case, it has been placed 𝜅 = 300. The
result obtained is shown in Figure 3 and allows observing that the time required to reach the
solution becomes equal to 220𝑒−3 seconds, reducing the time by about 63% compared to the
previously described case.
This demonstrates how the variation of the adopted criterion of stop (that does not alter the
correct execution) allows the algorithm to be executed in linear and reduced time also for very
complex SP.



Figure 3: Linear Time Complexity for a SP of 100 Rules

6. Conclusions and future Work

A novel genetic approach has been introduced to solve the constrained ordering of rules
contained in an SP. The results show how the proposed solution is well suited to solve the
problem that is addressed in the various case studies.
The heuristics introduced are more efficient than the topological sorting algorithms. Moreover,
they have some room for improvement that may make them acquire a uniform behavior
corresponding to rules with particularly dominant activation frequencies. In this way, it will be
possible to demonstrate the robustness of the proposed solution, varying the hyperparameters
of the distribution used to model the frequencies of activation.
The proposed contributions, especially regarding the second phase of the algorithm, make it
globally performant, as can be seen from the analysis of its time complexity.
Future developments will focus on benchmarking with the most recent approaches in the
literature to validate the efficiency of the proposed solution, especially in cases where more
sophisticated filtering policies need to be managed.
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