
Journal of Information Security and Applications 82 (2024) 103736

A
2
n

A
a
A
a

b

A

K
D
N
s
D
S
H
A

1

c
d
a
e
s
s
a
s
f
o
s
a

a

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

utomatic decision tree-based NIDPS ruleset generation for DoS/DDoS
ttacks
ntonio Coscia a, Vincenzo Dentamaro b, Stefano Galantucci b,∗, Antonio Maci a, Giuseppe Pirlo b

Cybersecurity Laboratory, BV TECH S.p.A., Milan, 20123, Italy
University of Bari Aldo Moro, Bari, 70125, Italy

R T I C L E I N F O

eywords:
istributed denial of service
etwork-based intrusion detection prevention

ystem
ecision tree
uricata/snort
yperparameter tuning
utomatic rule generation

A B S T R A C T

As the occurrence of Denial of Service and Distributed Denial of Service (DoS/DDoS) attacks increases, the
demand for effective defense mechanisms increases. Recognition of such anomalies in the computer network is
commonly performed through network-based intrusion detection and prevention systems (NIDPSs). Although
NIDPSs allow the interception of all known attacks, they are not robust to the continuing variation over time
of DoS/DDoS anomalies. The machine learning (ML) paradigm provides algorithms that can effectively reduce
concept drift due to the evolution of cyber threat data patterns. These methodologies can be exploited for
creating effective rules suitable for popular NIDPS engines such as Suricata.

This paper proposes a new algorithm called Anomaly2Sign, which automatically produces rules for Suricata
through an automatic Decision Tree (DT)-based generation process. The DT is trained on both anomalous
and legitimate traffic, allowing the generation process to select anomaly features that can be mapped within
the generated rule structure. Additionally, the DT hyperparameters are tuned at execution time to generate
a minimal ruleset capable of detecting the largest number of anomalous packets. The proposed algorithm
achieves classification metrics in the range of 99.7%–99.9% using the BOUN-DoS and BUET-DDoS datasets,
outperforming the compared ML classifiers, i.e., Logistic Regression, Support Vector Machine, and Multi-
Layer Perceptron. Furthermore, the leveraged DT model requires a shorter training and prediction time than
the previously cited benchmark classifiers. To enforce the selection of the DT model, an analysis of model
complexity is undertaken, including the evaluation of the Akaike Information Criterion (AIC) score. As a result
of such an evaluation, the DT model achieved the lowest AIC score among the compared approaches denoting
its low complexity. Finally, Anomaly2Sign has been compared with Syrius, i.e., an alternative state-of-the-art
automatic NIDPS rules generator, obtaining better performance for detection rate and execution time.
. Introduction

Nowadays, guaranteeing the security of information and communi-
ations technology (ICT) systems has emerged as a primary concern to
efend both companies and national borders. Identifying, investigating,
nalyzing, and responding to cyber threats and attacks is imperative to
nsure effective cyber security [1]. In cyberspace, malicious actors use
everal methods to assault their targets. According to the comprehen-
ive review proposed in [2], some of the commonly deployed attacks
re: (i) phishing; (ii) malware; (iii) man-in-the-middle; (iv) denial of
ervice (DoS)/distributed denial of service (DDoS). Regarding the latter
orm of attack, it consists of flooding victims with a large amount
f data that prevents the continuity of service provided by an ICT
ystem. According to the report released by Cloudfare [3], DoS/DDoS
ttacks targeting different industries have increased in number and

∗ Corresponding author.
E-mail addresses: antonio.coscia@bvtech.com (A. Coscia), vincenzo.dentamaro@uniba.it (V. Dentamaro), stefano.galantucci@uniba.it (S. Galantucci),

ntonio.maci@bvtech.com (A. Maci), giuseppe.pirlo@uniba.it (G. Pirlo).

intensity in the first quarter of 2023. Detecting DoS/DDoS represents
a topical issue for the scientific community as the temporal evolution
of this cyberattack hinders the proper functioning of common defense
mechanisms that are unable to handle this high volume of data [4]. The
detection approaches employed to recognize DDoS attacks are generally
categorized as signature- and anomaly-based [5]. These categories
encompass intrusion detection and prevention systems (IDPSs), i.e.,
devices and applications designed to monitor networks and systems
for detecting potential threats and performing preventive actions to
avoid unauthorized access within the defended network perimeter [6].
Some IDPSs leverage signature engines that can match network traffic
by searching for peculiar patterns within the analyzed network packet
header or payload. These are known as network-based IDPSs (NIDPSs).
vailable online 6 March 2024
214-2126/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.jisa.2024.103736
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
mailto:antonio.coscia@bvtech.com
mailto:vincenzo.dentamaro@uniba.it
mailto:stefano.galantucci@uniba.it
mailto:antonio.maci@bvtech.com
mailto:giuseppe.pirlo@uniba.it
https://doi.org/10.1016/j.jisa.2024.103736
https://doi.org/10.1016/j.jisa.2024.103736
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
Many tools fall into this category, including Snort [7] and Suricata [8]
open source engines [9]. In [10], the detection rate achieved by Snort
and Suricata was evaluated for different cyber threats. Although the
two engines result in a similar average detection rate, Snort outper-
forms Suricata in the DoS/DDoS detection rate. This evaluation has
been confirmed in [11]. On the other hand, Suricata leads to a better
result in terms of the computational performance required, such as
CPU and memory usage, than Snort. To take advantage of the latter
performance, it is preferable to generate Suricata DoS/DDoS rules that
can obtain a better detection rate.

Artificial intelligence (AI)-based solutions such as machine learning
(ML) and deep learning (DL) algorithms can be employed to deal with
cyber threat detection problems because they are promising in terms
of the resulting detection rate [12]. According to the surveys proposed
in [13], [14], ML algorithms can play a crucial role in this field,
enabling scientists to address specific cyber security problems, such as
DoS/DDoS detection tasks. In particular, ML approaches are used to
learn DoS/DDoS attack patterns to identify these assaults before the
disruption of targeted network services [15]. However, according to
the review provided in [16], there is a need to combine the potentiality
of DDoS detection approaches based on ML in a single cyber security
platform, such as an NIDPS engine. This is achievable by explaining
the results and output produced by the ML algorithms using a set of
methods belonging to the field of eXplainable AI (XAI) [17]. Explaining
an ML model aims to provide the logical decision rules inferred by the
model itself in a form that is understandable to a human. This property
is generally defined as the interpretability of an ML model [18]. In
general, the higher the model interpretability, the better the reliability
of the prediction system. Thus, high interoperability means being able
to understand how an ML model makes predictions, namely, how each
data feature contributes to the prediction. As a general rule, when
choosing an explainable ML model, a simpler model wins according
to Occam’s Razor principle [19]. Furthermore, current approaches for
explaining decisions made by DL algorithms, such as deep neural
networks (DNNs), are unstable [17]. In [20], a Decision Tree (DT) is
leveraged to interpret the decision rules extracted to write network
intrusion classification rules. However, despite DT models being ideal
in the sense of their capability in providing an understandable expla-
nation of the prediction, as for each ML model, decisions inferred by
the learner change by updating its hyperparameters. Therefore, given
two distinct DT models achieving an equal detection rate, the only
one resulting in the less number of extracted rules is preferable, since
it would lead to the generation of an optimal ruleset in the sense of
minimum number of rules generated.

This paper presents Anomaly-to-Signature (Anomaly2Sign), i.e., an
algorithm capable of automatically generating Suricata rules by lever-
aging the decision rules provided by a DT trained on a baseline con-
taining both legitimate and anomalous traffic, such as DoS/DDoS attack
network traffic dumps. To ensure a promising detection rate, the gen-
eration process begins if the DT used achieves suitable classification
performance, i.e., a detection rate higher than those achieved by Snort
rules in detecting DoS/DDoS in [10], otherwise the DT hyperparam-
eters will be updated. Upon generating these rules, Anomaly2Sign
checks that they are optimal, and if not, it optimally adjusts the DT
hyperparameters so that the generation of a minimum number of rules
with the highest detection rate is achieved.

The key contributions provided by this paper are:

• It extends the contribution proposed in [20] as follows:

– It introduces a feature selection phase that prepares training
data to make them suitable for the rule generation process.

– It introduces a strategy for automatically updating the DT
hyperparameters, having two main objectives:

1. Ensure that the model achieves acceptable detec-
tion performance, i.e., comparable with the Snort
2

detection performance on DoS/DDoS in [10].
Table 1
List of acronyms used in this manuscript.

AI Artificial Intelligence
AIC Akaike Information Criterion
AUC Area Under Receiver Operating Characteristic Curve
CBMP Cluster-Based Majority undersampling Prediction
CIDR Classless Inter-Domain Routing
DoS Denial of Service
DDoS Distributed Denial of Service
DLL Data Link Layer
DNN Deep Neural Network
DNS Domain Name System
DR Detection Rate
DT Decision Tree
FN False Negative
FP False Positive
FPR False Positive Rate
HTTP HyperText Transfer Protocol
ICMP Internet Control Message Protocol
ICT Information and Communication Technology
IDS Intrusion Detection System
IDPS Intrusion Detection and Prevention System
IP Internet Protocol
IPS Intrusion Prevention System
K-NN K-Nearest-Neighbors
KPCA Kernel Principal Component Analysis
LICIC Less Important Components for Imbalanced multiclass Classification
LIME Local Interpretable Model-Agnostic Explanations
LR Logistic Regression
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NIDPS Network-based Intrusion Detection and Prevention System
OS Operating System
ROC Receiver Operating Characteristic
RUS Random UnderSampling
SDN Software Defined Network
SHAP SHapley Additive exPlanations
SMOTE Synthetic Minority Oversampling TEchnique
SVM Support Vector Machine
T-Link Tomek-Links
TCP Transmission Control Protocol
TN True Negative
TP True Positive
TPR True Positive Rate
TTL Time-To-Live
UDP User Datagram Protocol
XAI eXplainable Artificial Intelligence

2. Generate the optimal ruleset, i.e., the one with the
fewest rules and the highest detection rate, based on
DT hyperparameter variation for a given hyperpa-
rameter space.

• It shows a benchmark analysis highlighting:

– The timing and classification performance achieved by the
same algorithms used for comparison in [20].

– The complexity of the compared models by evaluating the
Akaike Information Criterion (AIC).

– The execution time required and detection rate achieved
by Anomaly2Sign and a state-of-the-art methodology that
automatically generates Suricata rules.

The rest of this paper is organized as follows. Section 2 provides
a theoretical framework for IDPSs and DT models. Section 3 reports a
literature survey on: (i) DoS/DDoS anomaly detection solutions based
on DT models; (ii) methodologies used to automatically generate NIDPS
rules. Section 4 describes the main modules of the proposed algo-
rithm showing its high-level architecture. The methods and materials
used during the experimental phase are discussed in Section 5. Sec-
tion 6 illustrates the experimental results and their critical evalua-

tions. The Anomaly2Sign feasibility is discussed in Section 7. Section 8

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

a

2

n
t
s
S
r

a

presents the conclusions with the main findings and insights. Table 1
summarizes the list of abbreviations used in the manuscript.

2. Background

2.1. Network intrusion detection and prevention system

Network intrusion detection and prevention system (NIDPS) solu-
tions are generally used as a defense line that can efficiently discrim-
inate between legitimate and anomalous traffic. The general architec-
ture of the NIDPS engine presented in [9] consists of a sequence of
modules. In particular, the first module is delegated to collect network
packets. This type of operation varies depending on the operating
mode of the engine. In fact, whether the prevention mode is enabled,
packet acquisition is performed in the inline mode because real-time
processing must be guaranteed. On the other hand, if the system acts
as a detector, the port mirroring (passive) mode is enabled; this allows
temporary buffering of packets awaiting processing. Once a packet is
captured, a decoder module analyzes the traffic to ensure compliance
with network communication standards. Otherwise, the packet would
be discarded, generating an alert. Afterwards, a preprocessor module
performs defragmentation, reassembly, and session conformance at
low-level protocols, whereas high-level plugins validate packets based
on several application protocols. In addition to the previous modules,
the detection engine module compares the analyzed network packets
with the patterns defined in the engine’s knowledge base, i.e., the
involved ruleset. This component plays a key role as it is the core part
of the decision-making process. Therefore, the higher the detection rate
guaranteed by the involved ruleset, the better the overall performance
of the process. Finally, according to the decision made by the detection
engine, an action will be performed, which again depends on the
operating mode of the engine. The most common open source NIDPS
engines investigated in [9] and [10] are:

• Zeek [21]. This engine supports only detection mode; thus, it
acquires network packets in passive mode and provides alerts
when a rule matches a message. It is composed of several workers
that interact with a manager module that consists of two main
modules [9]: (i) an event engine; (ii) a policy script interpreter.
The first transforms network packets into event logs to redirect
them to the policy interpreter, which analyzes them using the
Zeek rules.

• Snort [7]. In contrast to Zeek, Snort supports both detection and
prevention operating modes. First, the network packets are sniffed
using the Libcap framework; then, the packet is decoded and
normalized to make it suitable for the analysis performed by the
Snort rules [9]. The first versions of Snort were single-thread
[10]. However, as of version 3, such an NIDPS engine supports
multithreading [9].

• Suricata [8]. It shares several characteristics with Snort, such
as the possibility of operating as both IDP and IPS and multi-
threading. In addition, it can support multiple detection engines
[9].

The NIDPS engine chosen for this study is Suricata, which will be
nalyzed in depth in the next section.

.1.1. Suricata
Each detection engine uses a proper detection ruleset to perform

etwork packet analysis. Suricata employs the set of rules provided by
he Emerging Threats community [22]. In this section, we focus on rule
yntax because the goal of this research is to automatically generate
uricata rules. It uses syntax very similar to Snort. An example of a
ule is given below:

lert tcp any any -> any any (msg : "A TCP packet was
detected . " ; sid : 1)
3

According to such an example, it can be divided into three main parts
according to the official documentation of Suricata [23]:

• The rule action highlighted in cyan. It determines the action to be
performed if the rule is triggered. Generally, if the inline mode
is enabled, this field can be set to drop, otherwise it is set to
alert.

• The rule header consists of a series of information such as the
protocol (highlighted in red), traffic direction (highlighted in
blue), source and destination addresses, and ports (on the left and
right sides of the traffic direction are highlighted in green). As a
general rule, the fields on the Suricata rule header can assume the
following values:

– Protocol:

∗ Application layer, such as http, dns, ftp, ssh, etc.
∗ Transport layer, i.e., tcp, udp.
∗ Network layer such as icmp, ip (that stands for all).

– Source(Destination):

∗ Host or subnet (CIDR notation) IP address.
∗ any, that is a general value matching all admissible

values.
∗ The so-called group variables, such as $HOME_NET

($EXTERNAL_NET), which include the series of IP
addresses typically employed in private(public) net-
works.

– Source(Destination) port:

∗ A single port or a range of ports.
∗ any as the same as the above described.
∗ A group of ports when they are not contiguous.

– Traffic direction:

∗ -> to indicate inbound traffic.
∗ <- to indicate outbound traffic.
∗ <> to indicate bidirectional traffic.

Note that it is possible to use logical operators that impose a
condition to be met by values instantiated in the rule header.

• The rule options (highlighted in yellow) represent the series of
peculiar information to search within the header or the payload
of the analyzed packet. There are several optional keywords that
can be inserted into a Suricata rule, such as msg and sid, which
represent the description and identifier of the rule, respectively.
The option part of the rule can include different keywords de-
pending on the cyber threats it attempts to identify. Because
this paper provides an algorithm capable of generating rules to
deal with DoS/DDoS anomalies, the following keywords must be
considered:

– classtype indicates the category of the rule. For example,
in the case of DoS/DDoS, it can be set to attempted-dos.

– flow determines whether the network flow should be ini-
tiated from the client or the server.

– threshold (or detection_rule):

∗ count that is a counter of packets intercepted by the
same rule.

∗ seconds that denotes the time interval to leave the
counting active.

∗ type that denotes the operating mode of threshold
keywords. In particular, if set to threshold, the rule
alerts every count packet in the defined time interval.
Otherwise, if set to limit the rule alerts at most
count times. However, it can be set to both, meaning
that the two modes discussed above are activated.

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

w
r
c
p
a
D
d

2

a

Fig. 1. (a) Decision Tree induction process. (b) Two examples of conditional control statements.
On the other hand, some option fields are not problem-specific:

– dsize that denotes the byte size of the packet payload at
the transport layer.

– TCP flags that can be S (SYN), A (ACK), R (RST), etc.
– ttl that quantifies a specific Time-to-Live (TTL) value in

the header of the network layer packet.

2.2. Decision Tree

Machine learning (ML) models can be divided into parametric and
nonparametric algorithms. An ML algorithm is said to be parametric
when the learned function is simplified to a known form consisting of a
fixed number of parameters. On the other hand, a nonparametric model
makes no assumptions about how the mapping function will be derived
[24]. A Decision Tree (DT) model belongs to the class of nonparametric
models based on the supervised learning paradigm [20]. This type of
model employs a tree-like structure to illustrate the probability of an
event occurring according to the training data given as input to the
model. From the root node, decisions and leaves are arranged in a
top-down tree structure to represent the decision model. Each level of
nodes represents a feature in the dataset, while a branch represents a
possible value or set of values. In addition to the root nodes providing
significant predictors, the leaf nodes determine the final classifications
[20]. The aforementioned process that allows the building of DTs from
training data is called DT induction [25] and is shown in Fig. 1(a). Such
a process can be represented using a conditional control statement,
which provides an easy-to-understand and intuitive set of rules for
making decisions [20]. Each statement, as highlighted in Fig. 1(b), can
be modeled as follows [26]:

IF {𝑓1 is 𝑣1 ∧ ... ∧ 𝑓𝑛𝑓 is 𝑣𝑛𝑓 } THEN class A ELSE class B(C)

here 𝑓𝑖 with 𝑖 = 1,… , 𝑛𝑓 is a feature within the training set, 𝑣𝑖
epresents the value assigned to the feature itself, where the chain of
onditions to be satisfied is called the antecedent of the rule, while the
rediction made is called the consequent. Decision rules generated by
DT are strongly affected by its hyperparameters; therefore, given two
Ts tuned in a different manner, these could lead to a different set of
ecision rules.

.2.1. Hyperparameters
This section discusses two of the more relevant DT hyperparameters

nalyzed in this study:

• Splitting Criterion (𝑐). By evaluating a statistical metric, this
hyperparameter determines how well a given feature value sep-
4

arates training examples building pure partitions according to
the target classification. One of the following two indexes is
commonly selected for such a purpose:

– Entropy. This index can be used to determine the impurity
of any set of data X corresponding to a DT node. Let n be
the different values that the target variable can assume, and
the entropy of X corresponding to the n-wise classification
is defined as follows [20]:

H(X) = −
n
∑

z=1
pz log2(pz) (1)

where pz indicates the likelihood that the set of data con-
sidered belongs to class z. This measure is typically used to
define the information content of a tree node to continue (or
not) the splitting procedure. Specifically, the most informa-
tive attribute search continues until nodes resulting in null
entropy are reached, i.e., the lower the entropy, the higher
the information gain.

– Gini. This index defines the purity of a set of data after being
split along a particular attribute. In particular, the better the
splitting, the more pure the data within the resulting sets
will be. It is calculated as follows [27]:

G(X) = 1 −
n
∑

z=1
p2

z (2)

Given an attribute on which a split results into two new sets
X1 and X2 are obtained, the reduction of the impurity due
to such a split can be evaluated as:

𝛥G(v) = G(X) −
(

|X1|

|X| G(X1) +
|X2|

|X| G(X2)
)

(3)

where |X|, |X1| and |X2| represent the number of samples in
X, X1 and X2 respectively.

• Maximum depth of DT (dMAX). This hyperparameter defines the
maximum depth that the DT can reach. In a limited case, e.g., no
null entropy nodes are met before, the splitting process is per-
formed until the maximum depth of the tree is reached. Let
|DTR| be the number of samples within the training data, dMAX
is limited to the maximum theoretical size |DTR|− 1. However, it
is reasonable to expect that this limit will never be reached, since
if this condition is satisfied, the model suffers from overfitting, as
shown by Mantovani et al. [28]. In fact, the more a tree grows in
depth, the more complex the model becomes, since more branches
will occur; therefore, it will acquire more information about the
data and there will be a growth in the overall variance.

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
3. Related work

3.1. Decision Tree for DoS/DDoS detection

DT is an ML model widely used in the literature to deal with the
DoS/DDoS detection task. In [29], an analysis of several ML algorithms
that perform the DoS/DDoS classification task was conducted, showing
that among the benchmarked methods, DT can achieve the highest
classification accuracy score. A similar analysis is performed in [30],
where the DT model was compared with a K-Nearest-Neighbor (K-
NN) model. As a result of this analysis, DT outperforms K-NN in both
classification accuracy and execution time, i.e., training and prediction
time. In [31], authors have taken advantage of a DT model to present a
low computational overhead system capable of detecting DDoS flooding
attacks. This was achieved by selecting a minimal number of features
using a low-variance filter. The results obtained denote the effective-
ness in minimizing the CPU load required while retaining a promising
accuracy value. In [32], several tree-based classifiers were evaluated
in the DDoS attack detection task using the CICDS2017 dataset. Using
an efficient feature selection strategy, the best solution among the
compared has been the partial DT algorithm, both in terms of exe-
cution time and classification accuracy. In [33], a DT model driven
by information gain is used to detect DDoS attacks in real time. The
experimental phase shows the effectiveness of the model in building a
DT capable of identifying the source of an attack among a large volume
of distributed traffic. This is achieved because of the pruning mean tree
strategy, which guarantees robustness of the model even in the case
of noise. In [34], a DT model is leveraged to address DDoS detection
tasks. In particular, the DT is trained using the CICDDoS2019 dataset,
achieving a higher classification accuracy than other ML classifiers.
In [35], a DDoS detection framework for a wireless network based
on random forest and J48 is proposed. Saikat et al. [36] try not
only to provide a defense mechanism for DDoS but also to support
detection by providing decision explanations. The interpretable models
used are Local Interpretable Model-Agnostic Explanations (LIME) and
SHapley Additive exPlanations (SHAP). To build them, an ML model is
required for learning purposes, such as DT, random forest, or logistic
regression. LIME using DT as an explainable model has one of the
highest likelihood scores. This result denotes the effectiveness of the
interpretability property of DT. The methodology proposed by Ahmim
et al. in [37] introduces an NIDS mechanism that combines tree-
based classifiers. It is a multi-stage methodology within which the
first and second classifiers receive the network traffic dataset as input
and classify it as malicious or legitimate. The third classifier refines
the result of the detection mechanism using the same data, features,
and results as the other two classifiers. The final result provides an
effective alerting mechanism but at the cost of using three classifiers
and a more complex application architecture. In [38], a DT classifier
was selected to perform the intrusion detection task combined with
the feature selection strategy proposed by the authors. The leveraged
DT, i.e., an ID3, has been evaluated using the KDD Cup 99 dataset,
which consists of a series of network anomalies, including DoS attacks.
The experimental evaluation highlights the benefit of the overall ap-
proach in terms of timing and classification performance. In [39], the
authors investigated the application of DT to detect DDoS attacks by
capturing traffic from a software defined network (SDN) and using two
state-of-the-art datasets. The experiments revealed that the DT model
performs better than the support vector machine (SVM) and naïve bayes
classifiers. In [40], a DDoS protection module based on a modified
version of the DT is presented. The system collects network information
by selecting significant traffic characteristics to pass to the DT model
trained using the Gini impurity. Furthermore, the system incorporates
a pessimistic error pruning strategy with the main objective of reducing
model execution time. The experiments were carried out in an SDN
environment, demonstrating the effectiveness of the system in detecting
DDoS attacks. The model proposed in [41] employs a DT algorithm
to detect DDoS attacks in an SDN-based cloud system. The evaluation
performed on the GureKDDcup6 dataset confirms the efficiency of this
DT-based approach.
5

3.2. Methodologies for automatic NIDPS rule generation

In addition to the existing or manually written signatures, automatic
NIDPS rule generators produce complementary signatures. Specifically,
they can rely on a larger amount of data from which to automatically
(by exploiting some algorithmic procedure) derive the rule (in a specific
syntax) that can intercept the desired anomaly [42]. Vollmer et al. [43]
propose a multimodal genetic algorithm for the automatic generation
of Snort rules, based on an offline process that acts downstream of
intrusion detection. The generation process is performed directly on the
ICMP packets. Each rule represents an individual as a candidate solu-
tion, and each field of the ICMP protocol represents an individual gene.
The rules are then sorted according to the fitness score to minimize
the reaction time of the filtering system. Anomalies, such as duplicate
rules, are removed to streamline the results. Finally, depending on the
exploration phase performed by the genetic algorithm for the overall
evolutionary cycle, the optimal rule may not be generated. The authors
of [44] propose an alternative evolutionary approach. In this case, the
fitness value is given by the detection rate, i.e., the ratio of the number
of intrusions detected by the rule to the total number of intrusions.
The selection criterion for the ruleset is the best overall fitness value,
which is based on the average of individual fitness values. The first
genetic operator is proportional to fitness, whereas the recombination
phase generates perturbations to refine the solution. The population
of the new rules is tested using Snort to compute the overall fitness
according to the detection rate cited above. In [44], both TCP and ICMP
DoS attacks are considered. Kao et al. [45] developed an automatic
rule generation algorithm for Snort called, which is capable of clas-
sifying malicious HTTP traffic and preventing application layer DDoS
attacks. This algorithm does not require legitimate traffic as the input
data. Given some samples of malicious HTTP traffic, they are matched
against existing rules, and if not matching, a rule generation process
ignoring the initial ruleset is started. Failure to consider legitimate
traffic in this process could increase the number of false positives.
The limitation of this algorithm is that it focuses only on a narrow
range of anomalies related to the HTTP protocol. The research proposed
in [46] aims at automating the Snort rule generation process using data
mining algorithms such as Ripper and C5.0. The algorithm starts by
processing and extracting some features from a network traffic dump.
Then, it generates new features, and the obtained dataset is analyzed
using data mining techniques. The generated rules are then selected
according to their detection rate, which is based on the performance
achieved by these rules when they are tested using different data
containing HTTP DoS/DDoS and SSH brute force attacks. The authors
of [47] propose an algorithm for automatic NIDPS rule generation
called Syrius. It takes as input one or more attack examples as input
and produces a list of candidate rules, i.e., rules that capture malicious
traffic according to the data captured. Initially, it identifies options that
allow the detection mechanism to completely intercept malicious traffic
according to the input. The rule generated so far by Syrius is called
the seed rule, and because only malicious traffic is considered, this
could lead to false negatives. Furthermore, Syrius uses legitimate traffic
to generate alternative rules that weaken the constraints expressed in
the seed rule while still capturing malicious traffic. Finally, Syrius uses
heuristic functions to rank the generated candidate rules according to
their similarity to existing ones. The rule generated at the end of this
process is called the golden rule.

The literature review revealed the lack of a generation algorithm
capable of handling a wider range of protocols to provide a more
effective defense methodology for network and application layer DoS
and DDoS attacks. In addition, it is desirable that the generated rules
are optimal in terms of both the number of rules produced and the

number of anomaly cases intercepted.

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

c

i
o
f
c
p

$

4. The proposed contribution: Anomaly2Sign

Anomaly2Sign is an innovative rule generation algorithm that takes
advantage of the interpretability property of a DT. It consists of three
main phases. First, the input baseline is transformed by the algorithm
using an ad hoc feature selection strategy. Second, the DT model
trained on the processed baseline is validated by computing its clas-
sification performance that reflects the same performance of the rules
that it would generate. If the model is considered inefficient, its hyper-
parameter configuration is changed until an acceptable performance is
reached, starting with the rule generation phase. If the model is con-
sidered inefficient, its hyperparameter configuration is changed until
acceptable performance is reached, starting with the rule generation
phase. Therefore, the rule-building phase starts if the DT rules can
accurately model the target anomaly, discriminating it from legitimate
traffic. Finally, the optimal ruleset, i.e., the one with the fewest rules
and the highest detection rate based on DT hyperparameter variation
over a given hyperparameter space, is generated.

4.1. Data preparation

Since the process of automatically generating NIDPS rules is per-
formed using an ML model, the baseline given as input for
Anomaly2Sign must be accurately pre-processed in the sense of noise
removal and data encoding. Furthermore, as such a baseline contains
samples from different network traffic categories (or classes), it is
important to compute the current number of samples within each
class to identify the class skew due to a possible imbalance between
classes. Such scenario occurrence is particularly suffered from DT
models driven by information gain [26], therefore, it is essential to deal
with it. Note that the pre-processing strategies described so far can be
deliberately adopted on the basis of the addressed problem and, despite
their execution being a requirement that the input baseline must meet,
these do not represent a key point of the proposed contribution as is
the feature selection procedure described below.

4.1.1. Feature selection
This process aims at selecting features that will be used during the

learning phase by the DT model. In particular, the feature selection
strategy is performed according to the goal of the entire algorithm, i.e.,
leveraging the decision rules inferred by the DT model to generate a
NIDPS rule. Therefore, the DT must learn the relationships between
only the variables that can be part of the rules that the model will
generate. The identification of such a class of features consists of two
phases, as described below. The first step is performed according to the
following definition.

Definition 4.1 (Pre-selected Feature). Given a baseline D, a feature 𝑓𝑖,
with 𝑖 = 1,… , 𝑛𝑓 is pre-selected for the learning process of the DT
model leveraged by Anomaly2Sign if it satisfies at least one of the
following properties:

1. There is a direct match for the feature with a Suricata syntax
keyword, i.e., there exists a direct mapping.

2. There is a transformation resulting in a semantic match of a
feature with a Suricata syntax keyword. This case is an indirect
mapping.

Features satisfying the above definition will be included in the set
of pre-selected features 𝛶 so that |𝛶 | ≤ 𝑛𝑓 . Suppose to have a baseline
omposed of some network packets having the following features:

In Table 2, 𝑛𝑓 = 8. According to the pre-selection strategy stated
n 4.1, |𝛶 | = 7 as Suricata’s syntax lacks a keyword that identifies the
perating system of the network traffic source. On the other hand, TTL,
rame length, and SYN can be used. In particular, both TTL and SYN
an be directly mapped to ttl and flags:S Suricata network-layer
6

rotocol keywords (see Section 2.1.1 in rule options). On the contrary,
Table 2
An example of D.

Src IP Src OS Dst IP Dst Port TTL Frame length Protocol SYN

10.10.1.5 Windows 10.10.1.18 443 128 174 TCP Set
10.10.1.17 Windows 10.10.1.26 53 128 60 UDP Not set
10.10.1.20 Linux 10.10.1.22 None 64 42 ICMP Not set
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
10.10.1.25 Linux 10.10.1.21 None 64 1301 HTTP Not set

Src stays for source.
Dst stays for destination.

frame length, that is, packet size in bytes at the data link layer (DLL) of
the protocol stack, cannot be directly mapped into a Suricata keyword.
However, it is possible to infer the dimension of the payload size at the
transport layer. For example, suppose that TCP is the protocol at the
transport layer and assume that the packet has the minimum header
size at both the network and transport layers (20 bytes each). Under
such a hypothesis, the payload at the transport layer, i.e. dsize in
Suricata, can be computed as the difference between the frame length
and the summation of header sizes at the network and transport layers.
Therefore, in this case, the frame length has mapped to the dsize
indirectly. Focusing on the remaining features in Table 2 (highlighted
in bold), these can be part of the Suricata rule at the header level.
However, except for the protocol field that will be set by the model
decision rules, the other will be discarded from the final set of selected
features 𝛬 because all the rules generated by Anomaly2Sign have the
following fixed header structure:

ZERO_TRUST any -> $NET_TO_PROTECT $PORT_GROUP

where the usage of group variables described in Section 2.1.1 has been
exploited. In particular, the fixed header attributes are populated as
follows:

Attribute 4.1 (Source → $ZERO_TRUST). The Zero Trust approach con-
siders any traffic insecure, regardless of whether it comes from internal or
external sources. This criterion has two major advantages:

• The application of a methodical strategy for network security that
protects an organization by eliminating implicit trust and constantly
validating every stage of a digital transaction;

• Not differentiating traffic sources minimizes the number of produced
rules. In particular, $ZERO_TRUST = [$INTERNAL_NET, $EXTER-
NAL_NET], where $INTERNAL_NET is the list of private subnets,
while $EXTERNAL_NET is any other network, i.e., $EXTERNAL_NET
!= $INTERNAL_NET.

Attribute 4.2 (Source Port → any). Any source port because it is assumed
to be random.

Attribute 4.3 (Destination → $NET_TO_PROTECT). Relevant destination
address(es) to protect.

Attribute 4.4 (Destination Port → $PORT_GROUP). List of ports that may
be affected by the particular protocol defined in the rule.

Therefore, given the simplified baseline in Table 2, the resulting
selected feature set 𝛬 comprises TTL, frame length, and protocol.

4.2. Rule generation

Given D composed of |𝛬| features, before starting with the training
phase, the set of model hyperparameters 𝛺 within which to vary them
is defined to select the resulting DT capable of generating the lowest

number of rules characterized by the highest detection rate value.

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

r

D
R
a

4.2.1. From Decision Tree rules to Suricata rules
Since the decision rules produced by the DT model will be made

applicable via their transposition into Suricata rule [20], the first step
consists of validating the model performance. In fact, it is not necessary
to start with the rule generation process if the model on which they
are based is inefficient. Consequently, the rule-building process begins
if the DT achieves an acceptable detection rate calculated according to
the formula proposed in [48]:

DR =
AD
TA

(4)

where AD represents the number of detected attacks while TA
represents the total number of attacks. To perform such a computation,
the baseline D is initially split into train (DTR) and test (DT) sets
consisting of all selected 𝛬 features. Then, we defined the detection
ate threshold so that the rule-building phase starts if DR ≥ 97.5%

is met. Such a percentage threshold has been selected to generate
rules achieving performance on DoS/DDoS attacks that can outperform
DoS/DDoS Snort rules in [10].

4.2.2. Rule-building phase
The rule-building phase can be divided into two sequential steps:

• First, Anomaly2Sign generates rules that have: (i) an action that
can be drop or alert, making the generated rule suitable for
both IDS (alert) and IPS (drop); (ii) a fixed header structure,
according to how determined in the feature selection phase, so
except for the protocol field that will be set by the model decision
rules; (iii) an optional pattern matching rule built according to
the values extracted by the DT trained on DTR. As an example,
suppose that the baseline D shown in Table 2, consists of both
legitimate and malicious network packets. Furthermore, suppose
that the induction process of the DT results (for H(X) = 0, where
X ⊂ DTR) in the following inference:

– IF Protocol is TCP ∧ SYN is set ∧ TTL is 128 ∧ frame length
≤ 200 THEN Malicious.

In this step, such a decision rule becomes the following Suricata
rule:

alert tcp $ZERO_TRUST any -> $NET_TO_PROTECT
$PORT_GROUP (msg : " Mal ic ious " ; sid : 1 ;
dsize: <160; ttl :128 ; flags : S ;)

As can be seen, no fixed rule fields have been set exploiting the
XAI methodology proposed in [20]. Note that the larger 𝛬, the
greater the number of fields that can be valued according to
DT decisions. For example, in the case of DoS/DDoS anomalies,
the number of samples for which the inference was generated
can be used to value count in the threshold keyword. In
addition, if a temporal feature is included in 𝛬, seconds can be
set according to the attack time frame, which is calculated as the
difference between the last and first time values assigned to the
anomaly packets. Furthermore, keywords related to the direction
of traffic flow are populated according to whether the traffic
targets the same server (track by dst, flow: to server).

• Second, Anomaly2Sign leverages an optimality criterion based
on the fact that by updating the DT hyperparameters, the DT
inferences change; therefore, the Suricata rules change accord-
ingly. In particular, a ruleset must be selected based on the DT
hyperparameter configuration that creates the optimal ruleset
according to the following definition.

efinition 4.2 (Optimal Ruleset). Given two Suricata rulesets R1 and
2, it is said that R2 is the optimal ruleset, if the following conditions
re both met:

1. |R2| ≤ |R1|;
7

2. the R2 rules intercept all traffic matched by the R1 rules.
Table 3
BOUN and BUET main structural characteristics.

Dataset No. samples No. features No. attack classes

BOUN 3 342 662 12 2
BUET 969 401 29 5

4.3. Anomaly2Sign summary

The entire process performed by Anomaly2Sign is summarized in
Fig. 2. Given an appropriately processed dataset D, the DT is trained
by employing an initial combination of hyperparameters. If the trained
model shows a satisfactory DTR value, it moves to the rule-building
phase. The rule is built on the basis of the DT decision rules. During
this phase, the system verifies that the generated ruleset is optimal
according to Definition 4.2. If the conditions within such definitions
are not met, Anomaly2Sign returns to the pre-training phase to update
the model’s hyperparameters, and the model will be again trained and
tested. In general, the algorithm restarts from its pre-training phase
whenever a hyperparameter update occurs. This condition can be met
several times according to 𝛺 size, which can still be redefined by
successive attempts.

5. Experimental setup

In this section, the methods and materials used to analyze the
performance of the proposed algorithm are described. First, the se-
lected datasets are outlined with the following pre-processing strategies
adopted to make the data suitable for Anomaly2Sign execution. In
addition, the metrics used to assess the algorithm are outlined. Finally,
the algorithms used for comparison are listed and discussed.

5.1. Datasets used description

Since the goal of this study is to provide an algorithm capable of
automatically generating a set of rules suitable for intercepting DoS
and DDoS anomalies, the BOUN [49] and BUET datasets [50] are
used. The first has been selected since it represents a state-of-the-
art dataset employed in several researches that aim to address the
DoS/DDoS detection problem [51–54]. The second has been chosen
because it shares some features contained in BOUN and extends the
attack categories by adding three DDoS typologies. Table 3 reports the
main characteristics of both datasets, which are further described in the
following paragraphs, including the adopted pre-processing strategies.

5.1.1. BOUN
As reported in Table 3, the BOUN dataset consists of two distinct

DDoS categories, i.e., TCP-SYN and UDP flood attacks, characterized
by 12 different features. Furthermore, the dataset includes legitimate
traffic, that is, common attack-free user traffic. Note that the BOUN
dataset is an unlabeled dataset. However, a column identifying the
traffic typology can be added according to the information provided
in [49]. In fact, the column time gives a clear indication about the time
interval in which both regular and attack traffic are implemented. A
waiting period of 80 s followed by a 20 s attack period was practiced.
To better highlight the network traffic characteristics found in the
BOUN dataset, Table 4 provides a description of BOUN features. Fig. 3
shows the distribution of network traffic for each traffic topology in the
BOUN dataset. According to this figure, anomalies within the dataset
can be summarized as follows:

• SYN-flood [15]: This attack exploits the three-way handshake
mechanism of the TCP protocol. In such a scenario, many con-
nection requests are sent to the target server; this will cause the
server to allocate resources for each of them until it reaches its

resource exhaustion, since the target server has to keep these

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
Table 4
BOUN dataset feature list.

Feature name Description Type

Time It represents the timestamp assigned to each network packet recording operation
with a resolution of 10−6 s.

Numeric

Frame number It represents a packet unit incremental counter. Numeric
Frame length It represents the packet size expressed in bytes. Numeric
Source IP It represents the network-level address of the network traffic source. IP object
Destination IP It represents the network-level address of the network traffic destination. IP object
Source Port It represents the transport layer port assigned to the network traffic source. Numeric
Destination Port It represents the transport layer port assigned to the network traffic destination. Numeric
SYN It defines whether the SYN flag contained in TCP packets is set or not. Boolean
ACK It defines whether the ACK flag contained in TCP packets is set or not. Boolean
RST It defines whether the RST flag contained in TCP packets is present. Boolean
TTL It represents the time-to-live field of the packer at the network-level. Numeric
TCP Protocol It indicates the transport layer packet protocol, i.e., TCP or UDP. String
Fig. 2. Anomaly2Sign overview.
Fig. 3. Number of network packets per traffic type for both datasets.

connections open while waiting for the three-way handshake
procedure to complete. This status is typically achieved using
one of the following two strategies: (i) a connection to the target
server is requested using a spoofed source IP (IP Spoofing) with
the target server sending back a SYN-ACK packet and never
receiving the last ACK packet from the real IP; (ii) the attacker
sends a SYN request to the target server and receives the response
containing SYN-ACK. In this situation, the attacker intentionally
decides not to send the ACK response.

• UPD-flood [15]: In this scenario, the attacker sends several UDP
packets with the same spoofed source IP and random destination
ports. When receiving such packets, the destination server(s)
checks whether any application listens on the specified port.
8

Since this is maliciously crafted, this condition is not verified for
most port numbers and results in ICMP Destination Port
Unreachable messages sent back to the attack target.

5.1.2. BUET
The BUET dataset shares the same features listed in Table 4. Fur-

thermore, according to Fig. 3, it extends the anomalies contained in
BOUN to the other types of protocols widely exploited for flooding
DDoS attacks [55], i.e.:

• ICMP-flood [15]: In this attack, the target is overloaded with
ICMP Echo Request from multiple sources. For each of them,
the victim uses its resources to generate a response for the sender.
However, many packets could overwhelm the server resources,
making it unavailable to legitimate users.

• DNS-flood [56]: This attack belongs to the class of amplification
attacks. In such an attack typology, two main strategies are
combined: reflection and amplification. Reflection is achieved via
IP spoofing, whereas amplification takes advantage of UDP-based
protocols. Unlike TCP, UDP-based protocols are connectionless,
making spoofing trivial because the initiator cannot establish a
handshake with them. Thus, the receiving server unknowingly
reflects its responses toward the victim. For greater severity, the
attacker exploits Internet protocols and services, such as DNS,
resulting in a much larger response than the originating request.

• HTTP-flood [57]: These attacks are generally performed by com-
promised machines that belong to a botnet. These attacks can be
classified according to the type of HTTP request, such as HTTP

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

B
I
f
t
t
r

5

e
d
r
a
F
t
s
s
c
a

i
d
s
t
c
s
d
S

t
i

𝜌

i
a
a
d
t
w
s
f
s
s

5

5

t

Table 5
List of features (𝛬) resulting from the feature selection.

Feature name Suricata field(s) Dataset(s)

Timestamp threshold: BOUN/BUET
count, seconds

Protocol proto BOUN/BUET
TTL ttl BOUN/BUET
Length dsize BOUN/BUET
SYN flags:S BOUN/BUET
ACK flags:A BOUN/BUET
RST flags:R BOUN/BUET
PSH flags:P BUET
FIN flags:F BUET

Fig. 4. Distribution of class skew on the used datasets.

GET flood when multiple sources send many requests for content,
such as images, files, or any resource available through HTTP
GET requests. It is very complicated to distinguish legitimate
from malicious requests that occur simultaneously and ignore
the latter, resulting in degraded server performance or service
disruption.

The feature space of the BUET dataset was aligned with that of the
OUN dataset (see Table 4), adding information on the TCP flag values.
n this case, legitimate traffic was collected considering the user attack-
ree traffic involved in the laboratory network used to dump all the
raffic. As a final remark, since legitimate traffic involves the entire user
raffic in both datasets, its features may be shared (e.g., protocol and
elated features) with the anomalous traffic.

.1.3. Strategies adopted for data pre-processing
The analysis and pre-processing procedure starts with appropriate

ncoding of all categorical data into numeric attributes to make these
ata suitable for training an ML algorithm. Malformed samples are
emoved to reduce noise from the dataset. This operation does not
ffect the actual dimension of the dataset because it is sufficiently large.
urthermore, the consistency of the data is checked since it may con-
ain format errors. According to the aforementioned described feature
election strategy, the list of features considered for both datasets is
ummarized in Table 5. In such a Table, for each future is assigned the
orresponding field in the Suricata syntax and the dataset to which such
feature belongs.

Before starting the classifier training phase, the dataset was divided
nto training and test sets. In this study, 30% is considered training
ata, and the remaining 70% represents the test data as in [58]. In
uch a phase, it is paramount to check whether the classes within the
raining set are balanced; otherwise, the learning process will lead the
lassifier to perform better for the majority class due to such a class
kew scenario. Both datasets suffer from class skew since in BOUN the
ominant class is represented by the legitimate class, while in BUET the
9

YN-flood outnumbers all other classes as shown in Fig. 3. Furthermore,
Fig. 4 points out the imbalanced ratio 𝜌 computed for each traffic
category with respect to the majority classes per dataset. Therefore,
given DTRm and DTRM , as the samples of the training set belonging to
he minority and majority classes, respectively, the imbalance ratio 𝜌
s calculated as follows [59]:

=
|DTRm |

|DTRM |

(5)

According to Eq. (5), the closer 𝜌 to zero, the higher the class
mbalance. Several strategies have been proposed in the current liter-
ture to address class skew in cyber security tasks. In general, these
re divided into two main categories: cost-sensitive approaches and
ata sampling techniques [60]. The first typology aims at adjusting
he learning process of an ML model to be unaffected by class skew,
ithout changing the distribution of the original data [61–63]. The

econd strategy acts at the data-level by removing(adding) samples
rom(in) the dataset, i.e., acting as an under(over) sampler. In this
tudy, we choose the second strategy, i.e., the following data-level
ampling techniques have been selected:

• Undersampling:

– Tomek-Links (T-Link) with Random UnderSampling (RUS)
[64]: Given two samples 𝑥, 𝑦 in DTRm and DTRM , respec-
tively, their Euclidean distance 𝛿𝑥𝑦 is determined. This dis-
tance is considered a T-Link if one of the inequalities 𝛿𝑥𝑦 <
𝛿𝑥𝑧 and 𝛿𝑥𝑦 < 𝛿𝑦𝑧 is maintained for any sample 𝑧. Conse-
quently, 𝑦 is discarded. Finally, |DTRM | = |DTRm | is obtained
by randomly removing samples from DTRM .

– Cluster-Based Majority undersampling Prediction (CBMP)
[65]: This technique takes advantage of the unsupervised
learning algorithm K-Means so that, given DTRM , it is di-
vided into 𝜂 clusters. For each 𝑖th cluster, with 1 ≤ 𝑖 ≤ 𝜂,
a number of samples equal to |DTRM |𝑖 corresponds. Then

𝑟𝑖 =
|DTRM |

𝑖
|DTRM |

is computed to determine the number of samples
to be selected from the majority class, that is, 𝑠𝑖 = 𝑟𝑖×|DTRm |.
Selection is performed using the following two strategies:
(i) randomly, obtaining 𝐶1; (ii) samples closest to the 𝑖th
centroid in the 𝑖th cluster, obtaining 𝐶2. Finally, the two
obtained subsets are combined with DTRm , resulting in the
overall re-sampled training set.

• Oversampling:

– Synthetic minority oversampling technique (SMOTE) [66]:
As a first step, the K-nearest neighbors (K-NN) for each
sample 𝑥 within DTRM is identified. Subsequently, on the
basis of the current value of 𝜌, a sampling rate 𝛾 is decided,
and for each sample in DTRm , 𝛾 samples are chosen from
its K-NN to create DTRm𝛾1

. The data augmentation is finally
realized for each sample 𝑥𝑗 ∈ DTRm𝛾1

, with 𝑗 = 1,… , 𝛾,
as 𝑥𝑁𝐸𝑊 = 𝑥 + 𝑓𝑅𝐴𝑁𝐷(0, 1) × |𝑥 − 𝑥𝑗 |, where the function
𝑓𝑅𝐴𝑁𝐷(0, 1) randomly chooses a number in the interval
[0, 1].

– Less Important Components for Imbalanced multiclass Clas-
sification (LICIC) [67]: This algorithm creates new instances,
balancing the minority classes and preserving non-linearity
in the minor class patterns. It uses kernel principal com-
ponent analysis (KPCA) and the permutation of the less
important components to generate new instances as a linear
combination of these components.

.2. Metrics used to evaluate model performance

.2.1. Conventional classification metrics
The adoption of data balancing strategies enables the use of conven-

ional metrics to evaluate the classification performance achieved by

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

S
d
p
c
m
m
e
s
o
i
a

5

A
i
m
T
a
I

A

l
d
i
o
s
t
t

t

M

G
t
c

5

h
t
w
b

𝛺

the DT leveraged by the proposed algorithm. Anomalous(Legitimate)
packets represent the positive(negative) class, so that correctly classi-
fied samples are denoted with true positive(negative) (TP(TN)), while
misclassifications are indicated with false positive(negative) (FP(FN)).
In particular, the metrics considered are [68]:

• Precision (PREC): The number of predicted packets that are actu-
ally identified as anomalous.

PREC = TP
TP + FP (6)

• Recall or True Positive Rate (TPR): The number of anomalous
packets identified as such from the total number of anomalous
packets.

TPR = TP
TP + FN (7)

Note that the TPR is equivalent to Eq. (4) when not only anoma-
lous traffic is considered as done in [48] for the detection rate
evaluation.

• F1 score: This represents the harmonic mean of the prior two
metrics.

F1 score = 2 × TPR × PREC
TPR + PREC (8)

• Area Under Receiver Operating Characteristic (AUC): The Re-
ceiver Operating Characteristic (ROC) curve relates Eq. (7) with
the false positive rate (FPR), defined as FPR = FP

FP+TN . The area
under the ROC is commonly used as a metric to assess the quality
of a curve [69].

ince as an output of the data pre-processing strategy, a balanced
ata is obtained, we want an easily understandable metric for overall
erformance regardless of the class for in multi-class scenarios. As a
onsequence, the micro-averaged version of the above classification
etrics is considered [68]. However, by evaluating micro-precision and
icro-recall, it can be observed that the measurements obtained are

quivalent [68]. Consequently, the micro-F1 score will also have the
ame value. Therefore, in our evaluation, we will only report the value
f the micro-F1 score as representative of the three metrics. Note that
n this scenario, the micro-average F1 score matches the classification
ccuracy [68].

.2.2. Model complexity
To enforce the choice of the DT as an explainable model, the

kaike Information Criterion (AIC) metric is evaluated. Such a metric
s typically employed in the fit analysis procedure, which evaluates the
odel not in the sense of hypothesis testing but for model selection.
herefore, the AIC provides feedback on the goodness of the model
dopted in fitting the given data with respect to the model complexity.
n particular, it is calculated as follows [70]:

IC = 2(k − ln()) (9)

where k represents the number of model parameters, while is the
ikelihood function produced by the model observing the training label
ata. As can be seen in Eq. (9), this metric grows with k, which is an
ndicator of the complexity of tuning a model. The greater the number
f parameters, the larger the hypothesis space. In general, a higher AIC
core corresponds to higher complexity of the model. However, k is not
he unique factor to consider. In fact, such a metric is also a function of
he likelihood natural logarithm. Given a supervised learning problem,

can be computed using the so-called mean squared error (MSE) on
est data (DTEST) [71]:

SE =
∑

|DTEST|
i=1 (𝑦∗𝑖 − 𝑦𝑖)2

|DTEST|
(10)

By measuring the MSE, we can get a sense of how close the predic-
tions (𝑦∗) are to the actual values (𝑦). Therefore, a low MSE score is
10

𝑖 𝑖 a
desirable. For 0 < MSE < 1, ln() → −∞ is observed, therefore AIC > 0.
iven two distinct models achieving similar performance, the model

hat results in the lowest AIC score must be preferred since it is less
omplex according to [19].

.3. Decision Tree model employed

Based on one of the objectives of this study, in this section, the
yperparameter space 𝛺 within which to vary the configuration of
he model is defined. Note that this represents a simplified scenario
here the only two hyperparameters recalled in Section 2.2.1 have
een considered.

=

{

dMAX ∶ [5, 7]
𝑐 ∶ [𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑔𝑖𝑛𝑖]

(11)

By varying the pair of 𝑐 and dMAX used, even if the detection
performance remains acceptable, the variation in the number of rules
produced (|R|) by each distinct DT model will be indicated for two
cases, i.e., pairs (5, entropy) and (7, gini).

5.4. Algorithms selected for benchmark

This section describes the list of algorithms used for benchmarks di-
vided into: (i) ML classifiers compared to the DT used by Anomaly2Sign;
(ii) alternative methodologies for the automatic generation of Suricata
rules.

5.4.1. Machine learning classifiers
The same ML classifiers used in [20] are evaluated to compare both

the timing and classification performance. Furthermore, to extend the
evaluation, an artificial neural network was considered. In summary,
the selected models can be described as follows:

• Logistic Regression (LR) [72]: This is a parametric ML model that
addresses the problem of fitting training data by adjusting the pa-
rameters (𝜃) of the logistic function ℎ(𝜃) = 1

1+𝑒−𝑓𝜃
, where 𝑓𝜃 = 𝜃0+

𝜃1𝑥 is a linear function. In particular, the parameter updates are
performed using a gradient descent procedure that minimizes the
error function 𝐽 (𝜃) = − 1

|DTR|

[

∑
|DTR|
𝑖=1 𝑦𝑖 log(ℎ𝜃) + (1 − 𝑦𝑖) log(1 − ℎ𝜃)

]

.
• Support Vector Machine (SVM) [72]: This algorithm searches for

an optimal hyperplane capable of separating samples between
classes. A good separation is achieved by the hyperplane with the
greatest distance to the nearest training data point in any class,
since the larger the margin, the lower the generalization error
of the classifier. Given the hyperplane equation ⃖⃖⃗𝜔⃖⃗𝑥 + 𝑏 = 0, for
which 1

2‖𝜔‖
2 is minimum, is optimal. As the boundaries of the

hyperplane represent the constraints, searching for the optimal
hyperplane represents a constrained optimization problem that
is addressed using the Lagrangian dual form obtaining ⃖⃖⃗𝜔⃖⃗𝑥 + 𝑏 =
∑

𝑖 𝛼𝑖𝑦𝑖 ⃖⃖⃗𝑥𝑖 ⋅ ⃖⃗𝑥 + 𝑏, where the samples ⃖⃖⃗𝑥𝑖 considered are only the
support vectors and 𝛼𝑖 represents the 𝑖th Lagrangian multiplier.

• Multi-Layer Perceptron (MLP) [72]: This is a conventional feed-
forward neural network composed of a single hidden layer con-
sisting of 0.8 × 𝑛𝑓 neurons. This configuration was chosen ac-
cording to the universal approximation theorem stated in [73].
Data are then forwarded to the classification layer activated by
a rectified linear unit (RELU) function. In this case, 𝐽 (𝛩) =
− 1

|𝐷𝑇𝑅|

[

∑
|𝐷𝑇𝑅|

𝑖=1
∑𝑛

𝑘=1 𝑦𝑖(𝑘) log(ℎ𝛩(𝑥𝑖))(𝑘) + (1 − 𝑦𝑖(𝑘)) log(1 − (ℎ𝛩(𝑥𝑖))(𝑘))
]

is the loss function, with 𝛩 the matrix of synaptic links between
the layers of the network. The parameter update is performed by
backpropagating the error computed by the network.

Because the addressed task is multi-class classification, each ML
lgorithm has been trained following a one-vs-rest strategy.

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
Fig. 5. (a) Setup of the comparison between Anomaly2Sign and Syrius. (b) Number of packets involved in each flood attack as a function of the attack timeframe..
5.4.2. Methodology compared for automatic Suricata rules generation:
Syrius

This section describes Syrius [47], that is, the automatic NIDPS
generation tool used to produce a confrontation case with the proposed
contribution. In particular, the detection rate achieved by each pro-
duced rule and the execution time required by the generation process
are evaluated. Syrius consists of a series of main modules that can be
summarized as follows [47]:

• Reverse engineering: The first step aims to generate a rule, namely
the seed rule, capable of intercepting the input of malicious traffic
into the system. This is achieved by employing two different
strategies to select the options that will be part of the rule.
The first strategy (field strategy) is independent of the protocol,
whereas the second strategy (payload strategy) acts only on HTTP
traffic. Because only malicious traffic is considered in this step,
the seed rule may be over-specified.

• Rules creation: This step aims to discard the rule options that
would match the legitimate (negative) traffic due to the over-
fitting suffered from the seed rule. Using this technique, Syrius
minimizes the rules generated in the previous step, guarantee-
ing that all malicious traffic will be captured. Here, an attack
variation module is leveraged to ensure that the rule obtained
continues to match the possible variant of the malicious traffic as
input despite the removal of options implemented with the aim
of minimizing the false negative rate.

• Ranking: This step ranks the rules using heuristic functions. The
similarity between a new rule and rules from public set of rules
is estimated using different criteria. In particular, the usefulness
of rules is more likely to be reflected in rules that look similar to
existing trusted rules. This ranking evaluation outputs the final
rule, which is called golden rule.

Syrius has used thanks to the open source code released by the
authors in [74]. To compare the performance of Anomaly2Sign and
Syrius, the SYN-flood attack dataset released by the authors of Syrius
is employed. A high-level overview of the test is shown in Fig. 5(a).
The two algorithms produce two sets of rules RA2S and RS, respectively,
which are empirically compared in terms of D and execution time (𝜏).
11

R

Since Anomaly2Sign focuses on DoS/DDoS attacks, it has been
compared with Syrius using the synflood1 and positive-http2

datasets as anomalous and legitimate traffic, respectively.
Finally, to evaluate DR (see Eq. (4)) achieved by RA2S and RS, some

SYN-Flood attack scenarios have been implemented using hping3,
i.e., a state-of-the-art tool used to generate DoS/DDoS anomalous traffic
[75–77]. In particular, ten different attack scenarios are generated,
each involving 1500 anomalous network packets per second for a time
frame that increases by one second per attack, as shown in Fig. 5(b).
The attack rate has been defined according to the same finding as in
the baseline given as input to both generation processes.

Hardware

5.4.3. Implementation details and hardware settings used
Anomaly2Sign was implemented in Python. All ML algorithms (in-

cluded the DT) were developed taking advantage of the scikit-
learn framework [78]. The main package employed for the rule
generation process was the so-called suricata-parser [79]. All
tests were run on a Ubuntu-OS virtual machine from our laboratory
with the following hardware settings: Intel Xeon(R) E5-2620 v3 CPU
@ 2.40 GHz, 16 GB RAM.

6. Results and discussion

6.1. Timing performance

Since the process of automatically generating rules must be rapid,
both training and testing times required by the ML model leveraged by
Anomaly2Sign and the benchmark algorithms are pointed out.

6.1.1. Training time
Fig. 6 shows the training time required by each algorithm com-

pared to different datasets. As a general rule, the higher the number
of samples in DTR, the longer the training time. Accordingly, given
an algorithm, the strategy used to deal with class skew affects this

1 https://github.com/STAR-RG/syrius/blob/master/syrius/Datasets/
synflood.pcap [Accessed on 01/03/2023].

2 https://github.com/STAR-RG/syrius/blob/master/syrius/Datasets/
positive-http.pcap [Accessed on 01/03/2023].

https://github.com/STAR-RG/syrius/blob/master/syrius/Datasets/synflood.pcap
https://github.com/STAR-RG/syrius/blob/master/syrius/Datasets/synflood.pcap
https://github.com/STAR-RG/syrius/blob/master/syrius/Datasets/positive-http.pcap
https://github.com/STAR-RG/syrius/blob/master/syrius/Datasets/positive-http.pcap

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
Fig. 6. Training time (in seconds) required by the algorithms compared for different tested datasets.
performance. This can be seen in Fig. 6, as fixed the ML classifier, over-
sampling techniques result in a longer training time than undersam-
pling techniques, regardless of the dataset considered. Regarding the
performance achieved by each compared classifier, the main findings
derived from Fig. 6 can be summarized as follows:

• The SVM model requires the longest training time among the
compared classifiers. In the worst case, i.e., SVM trained on BOUN
data sampled through the SMOTE algorithm, the training time re-
quired exceeds 105 s. In experiments involving the SVM classifier,
the shortest training time is recorded when T-Link combined with
RUS is used for reducing BUET. However, in this specific case, the
training time is ∼ 1

2 × 103 s, which is very long.
• The MLP classifier is the second worst performer among the

examined algorithms in terms of training time. When BOUN data
are augmented using SMOTE or LICIC, this classifier requires a
12
training time of ∼103 s. On the other hand, when the BUET data
are undersampled, the MLP reaches the shortest training time
with respect to the eight experiments in which the MLP is tested,
i.e., close to 102 s.

• The LR classifier reduces the training time overhead of the SVM
and MLP. In fact, it learns on expanded BOUN data in less
than 102 s for SMOTE and in ∼30 s for LICIC. Furthermore, in
experiments involving LR, the shortest training time is achieved
for BUET data undersampled with T-Link combined with RUS
(∼5 s.)

• The DT model outperforms all the compared classifiers because it
requires the shortest training time in all cases. In particular, for
BOUN data, the DT requires a training time close to 10−1 s when
the data is reduced using T-Link combined with RUS or CBMP.
On the other hand, when oversamplers are used, the training time
remains short, reaching a maximum of 10 s. Finally, in the case

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
Fig. 7. Testing time (in seconds) required by the algorithms compared for different test cases.
of BUET data, the training time is less than 10−1 s in the case of
undersampling, whereas it is between 0.5 and 1 s in the case of
oversampling.

6.1.2. Testing time
Fig. 7 points out the testing time required by each algorithm

combined with different data-level sampling techniques per different
dataset evaluated. Note that the use of data sampling techniques affects
only |DTR|, which means that the number of data used in testing does
not change. However, a classifier learns a policy that is influenced
by its training dataset and thus also by how its class skew has been
adjusted. Focusing on the four compared classifiers, the same trend
already discussed in the training time analysis is confirmed:

• The SVM classifier requires the largest testing time, i.e., it is the
worst performer among all algorithms compared. In particular,
13
when this classifier is combined with LICIC, it takes more than
105 s to perform the predictions on BOUN data. On the other
hand, among the four SVM cases, the shortest testing time is
greater than 103 s when combined with T-Link with RUS in the
case of BUET data.

• The MLP classifier needs 50 s to perform predictions on oversam-
pled BOUN data. On the other hand, the testing time decreases
to ∼20 s when the BOUN data are undersampled. In the case of
BUET data, the MLP requires testing time between 0.5 and 1 s.

• The LR classifier outperforms SVM and MLP in terms of testing
time. In particular, in the case of BOUN data, the LR requires ∼1 s,
whereas for BUET data, the testing time required is 0.1 s.

• The DT requires a testing time of ∼1 s for BOUN data, regardless
of the data-level sampling technique and hyperparameter combi-
nation used. Similarly, in the case of BUET data, the testing time
required by the DT is less than 10−1 s.

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

p
i
r

6

p
a
d
t
c
r
T

c
w
f
t

6

c
f
c

r
e
s
c
p
d
M
F
v
f
A
T
u
o
c
a
A
a

6
r

p
(
D
g
T
p
o

Table 6
Classification metric scores achieved by comparing algorithms for the tested datasets.

Algorithm Data sampling BOUN BUET

F1 score AUC F1 score AUC

LR

T-Link with RUS 0.945 0.998 0.948 0.998
CBMP 0.946 0.998 0.948 0.998
SMOTE 0.946 0.998 0.948 0.998
LICIC 0.713 0.770 0.173 0.500

SVM

T-Link with RUS 0.933 0.980 0.712 0.998
CBMP 0.935 0.981 0.890 0.996
SMOTE 0.960 0.988 0.986 0.998
LICIC 0.755 0.789 0.666 0.667

MLP

T-Link with RUS 0.996 0.998 0.993 0.998
CBMP 0.996 0.998 0.991 0.998
SMOTE 0.996 0.998 0.990 0.998
LICIC 0.713 0.706 0.470 0.688

DT T-Link with RUS 0.997 0.999 0.997 0.998
CBMP 0.997 0.999 0.997 0.998

(5, entropy) SMOTE 0.997 0.999 0.997 0.998
LICIC 0.871 0.500 0.072 0.500

DT T-Link with RUS 0.997 0.999 0.994 0.998
CBMP 0.997 0.999 0.994 0.998

(5, gini) SMOTE 0.997 0.999 0.994 0.998
LICIC 0.875 0.500 0.110 0.500

DT T-Link with RUS 0.997 0.999 0.997 0.999
CBMP 0.997 0.999 0.997 0.999

(7, entropy) SMOTE 0.997 0.999 0.997 0.999
LICIC 0.870 0.500 0.000 0.500

DT T-Link with RUS 0.997 0.999 0.997 0.999
CBMP 0.997 0.999 0.997 0.999

(7, gini) SMOTE 0.997 0.999 0.997 0.999
LICIC 0.870 0.500 0.012 0.500

The overall timing performance analysis indicates that the best
erformance for all the compared algorithms is achieved by the DT,
.e., the ML model leveraged by Anomaly2Sign, which ensures a rapid
ule generation process.

.2. Classification performance

Table 6 lists the classification performance achieved by all com-
ared classifiers combined with different data-level strategies for BOUN
nd BUET datasets. The highest classification metric scores obtained per
ataset were highlighted using bold type style. It is important to remark
he objective of such an analysis, as the performance achieved by the
lassifier is reflected in the performance that would be achieved by the
ules generated using the model itself. The main insights derived from
able 6 are listed as follows:

• The LR classifier achieves an F1 score of 94.5% and 94.8% for
BOUN and BUET, respectively, using T-Link combined with RUS,
CBMP, or SMOTE. Analogously, the AUC was 0.998 in the same
cases examined. In contrast, a significant decrease in the same
performance was obtained when class skew was addressed with
LICIC.

• An F1 score of ∼93% is obtained by the SVM classifier using un-
dersampling techniques to deal with BOUN imbalanced data. On
the same dataset, such a metric is increased by three percentage
points when class skew is tackled using SMOTE. The AUC score
is in the range 0.98–0.99, except for LICIC, which again leads to
poor performance in both BOUN and BUET datasets. With respect
to the BUET data, the SVM performs well only when combined
with SMOTE. In the case of reduced data, even with promising
AUC values, the F1 score is at most equal to 0.89 for CBMP.

• The MLP classifier outperforms SVM and LR in terms of F1 score
regardless of the data considered. In particular, this metric is
14

equal to 99.6% and ∼99% for BOUN and BUET, respectively, when
MLP is trained on data adjusted using T-Link with RUS, CBMP, or
SMOTE. Once again, the LICIC oversampler results in the worst
performance. Lastly, MLP achieves an AUC equal to 0.998 on both
involved datasets.

• The ML classifier achieving the best classification performance
among all compared classifiers is the DT. Furthermore, this result
is obtained regardless of the hyperparameter pair selected from 𝛺.
As shown in Table 6, all four DTs achieved an F1 score of 99.7%
for BOUN and BUET data preprocessed using T-Link combined
with RUS, CBMP, or SMOTE. The same trio of algorithms leads to
an AUC of 0.999 for all four trees. In this case, the only exception
is found when LICIC is used because an AUC value close to 0.5
denoting that the classifier cannot distinguish between malicious
and legitimate traffic.

The classification performance analysis has shown that among the
ompared classifiers, the DT achieves the highest classification scores,
hich are stable in the range 99.7%–99.9%. Consequently, the classi-

ication rules derived from the DT decision rules can effectively detect
he DoS/DDoS anomaly.

.3. Model complexity analysis

According to the results obtained from the previous analyses, the
omplexity analysis was performed excluding from the evaluation per-
ormed so far those algorithms that met at least one of the following
onditions:

• The worst ML algorithm (combined with all data-level sampling
techniques) in terms of timing performance.

• Algorithms (the combination between data-level sampling and the
ML classifier) that achieve an F1 score less than 97.5%, i.e., do
not satisfy Eq. (4). In this regard, we remark that the micro F1
score, which is equal to the micro TPR, is equivalent to DR when
not only anomalous traffic is considered.

Fig. 8 reports the AIC scores computed according to Eq. (9) for all
emaining algorithms. Regardless of the data-level sampling technique
mployed, the DT model outperforms the MLP in terms of the AIC
core achieved. In particular, it results in AIC ∼31. In contrast, the MLP
lassifier leads to an AIC in the range 45–55. Because of the similar
erformance achieved in Table 6, such a result is mainly due to the
ifference between the models in terms of k (see Eq. (9)), in fact, an
LP model requires the configuration of more parameters than DT.

urthermore, in Fig. 8, it is possible to observe a decrease in the AIC
alue in the case of MLP as the sampling technique considered changes
or BOUN data (the higher the number of training data, the lower the
IC). On the other hand, for BUET, the AIC follows a jagged trend.
his trend is definitely attributable to the achieved MSE as k remains
nchanged. Neither of these trends is found in the case of DT, regardless
f the techniques used to deal with data class skew. Moreover, the
hange in hyperparameters does not change the AIC, which follows
n almost constant linear trend. As a final point, since the lower the
IC, the lower the complexity of the model, this result enforces the
dvantage of choosing DT both as a classifier and as an explainer.

.4. Effectiveness of DT hyperparameter tuning to generate the optimal
uleset

Deliberately, four DTs were compared as the chosen pair of hyper-
arameters varied starting from the hyperparameter space 𝛺 defined in
11). The main objective of this comparison is to show how different
Ts, in the sense of different hyperparameter settings, lead to the
eneration of different decision rules, i.e., different Suricata rules.
hus, let two distinct DTs be considered, with equivalent detection
erformance. The DT leading to the generation of the ruleset consisting
f the smallest number of rules is chosen according to the stated

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.

i
a

Fig. 8. AIC achieved by the algorithms compared for the tested datasets.
n 4.2. To point out such an analysis, let us consider the BUET dataset
nd the DTs tuned with pairs (entropy, 5) and (gini, 7) as 𝐶 and

dMAX, respectively. First, both DTs share the detection performance and
generate equivalent rules for SYN-Flood, UDP-Flood, ICMP-Flood, and
DNS-Flood. The generated rulesets differ for the inferences produced
on the HTTP-flood anomaly as follows:

• R(entropy, 5):

1. drop http $ZERO_TRUST any ->
$NET_TO_PROTECT $PORT_GROUP
(msg : " HTTP_f lood_at tack " ;
classtype : attempted−dos ; sid : 1 ;
dsize: <595; flow : t o _ s e r v e r ;
threshold : type both , t rack by_dst ,
count 2100 , seconds 3 ;)

2. drop http $ZERO_TRUST any ->
$NET_TO_PROTECT $PORT_GROUP
(msg : " HTTP_f lood_at tack " ;
classtype : attempted−dos ; sid : 2 ;
dsize: <372; flow : t o _ s e r v e r ;
threshold : type both , t rack by_dst ,
count 2005 , seconds 2 ;)

3. drop http $ZERO_TRUST any ->
$NET_TO_PROTECT $PORT_GROUP
(msg : " HTTP_f lood_at tack " ;
classtype : attempted−dos ; sid : 3 ;
dsize: <1246; flow : t o _ s e r v e r ;
threshold : type both , t rack by_dst ,
count 5496 , seconds 2 ;)
15
4. drop http $ZERO_TRUST any ->
$NET_TO_PROTECT $PORT_GROUP
(msg : " HTTP_f lood_at tack " ;
classtype : attempted−dos ; sid : 4 ;
dsize: <1400; flow : t o _ s e r v e r ;
threshold : type both , t rack by_dst ,
count 13530, seconds 3 ;)

• R(gini, 7):

1. drop http $ZERO_TRUST any ->
$NET_TO_PROTECT $PORT_GROUP
(msg : " HTTP_f lood_at tack " ;
classtype : attempted−dos ; sid : 1 ;
dsize: <683; flow : t o _ s e r v e r ;
threshold : type both , t rack by_dst ,
count 4105 , seconds 5 ;)

2. drop http $ZERO_TRUST any ->
$NET_TO_PROTECT $PORT_GROUP
(msg : " HTTP_f lood_at tack " ;
classtype : attempted−dos ; sid : 2 ;
dsize: <1400; flow : t o _ s e r v e r ;
threshold : type both , t rack by_dst ,
count 18976, seconds 5 ;)

According to Definition 4.2, the first check to be performed is on
the dimension of the rulesets. In this case, |R(gini, 7)| < |R(entropy, 5)|.
According to this result, R(gini, 7) is candidated as an optimal ruleset
if no deterioration of detection performance is verified, i.e., all traffic
matched by R(entropy, 5) is also intercepted by R(gini, 7). In this regard,
the main difference between the two rulesets relies on the setting of
dsize and threshold keywords. The first two rules in R(entropy, 5)
matches traffic having a payload size at the transport level less than

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
595 and 372 bytes, respectively. On the other hand, the first rule in
R(gini, 7) is activated for a payload size smaller than 683 bytes at the
transport level. Furthermore, the threshold values of this rule are the
sum of those of the first two rules in R(entropy, 5). Analogously, the
second rule in R(gini, 7) embeds the third and fourth rules in R(entropy, 5)
since it matches packets having a payload size less than 1400 bytes
and for a threshold count and a time frame equal to the sum of the
same values of both rules in R(entropy, 5). Thus, R(gini, 7) satisfies both the
conditions in the optimality criterion. As a consequence, Anomaly2Sign
would produce the rules generated by the DT tuned using (gini, 7) as 𝑐
and dMAX, respectively, reducing by 50% the HTTP-flood NIDPS rules
with respect to signatures generated by the DT tuned using (entropy,
5).

6.5. Automatic rule generation comparison

By running both tools, the following rules have been obtained:

• RS:

– Seed rule:

alert tcp any any -> any any (msg :
" Tes t ing ru le 0 " ; flags : S ;
window :512 ; threshold : type both ,
t rack by_dst , count 5000 , seconds
5; sid : 525 ;)

First, Syrius identifies the involved anomaly by reading the
name of the input file. According to this finding, some main
characteristics of the rule to be generated are fixed, such
as flags:S, window:512, and the threshold values
in this particular case. Therefore, these rule values remain
unchanged regardless of the effective features in the input
dataset.

– Golden rule:

alert tcp any any -> any any (msg :
" Tes t ing ru le 0 " ; flags : S ;
threshold : type both , t rack by_dst ,
count 5000 , seconds 5; sid : 525 ;)

Then, the seed rule is refined by removing the window Suri-
cata keyword value according to the previously described
ranking process.

• RA2S:

alert tcp $ZERO_TRUST any -> $NET_TO_PROTECT
$PORT_GROUP (msg : " Synflood " ;
classtype : attempted−dos ; sid : 1 ; flags : S ;
flow : t o _ s e rve r , not−es tab i l i shed ;
threshold : type both , t rack by_dst , count
1463 , seconds 1 ;)

As observed by analyzing RA2S, the DT model identified the split-
ting of the SYN-flood anomaly on the SYN flag, which is a peculiar
feature of the anomalous traffic considered when compared to
the negative traffic given by HTTP packets for which such a flag
is not set. Furthermore, the threshold values were set on the
actual number of packets involved in the anomaly baseline and
according to the actual attack time frame.
Suppose to exclude the SYN feature from the pre-selection phase,
making flags:S a fixed component of the generated rule, as
done by Syrius. Consequently, Anomaly2Sign will generate the
following rule:

alert tcp $ZERO_TRUST any -> $NET_TO_PROTECT
$PORT_GROUP (msg : " Synflood " ;
classtype : attempted−dos ; sid : 1 ; dsize : 0 ;
flags : S ; flow : t o _ s e rve r , not−es tab i l i shed ;
threshold : type both , t rack by_dst , count
1463 , seconds 1 ;)
16
Thus, in this scenario, the proposed method would define the split
on the frame size feature that is transformed into an appro-
priate value for the dsize keyword, according to the reasoning
provided in Section 4.1.1. Despite this rule being over-specified,
i.e. less general than the previous one, it gives a clear expla-
nation of the structure of the anomalous packets for which the
absence of data within the packet payload can be inferred. There-
fore, Anomaly2Sign is capable of accurately reflecting the main
characteristics of the packets involved during an attack process
implemented to realize the input baseline.

In Fig. 9, the detection rate DR and the execution time 𝜏 (in seconds)
required using the two methods to generate a single rule are shown. As
a general rule, given two rules obtained from an automatic generation
process and achieving good performance in terms of DR, the process
that requires less time in the overall generation procedure is more
advantageous.

The performance achieved can be analyzed per algorithm as follows:

• In Fig. 9(a), the DR achieved by Syrius is shown. This figure
shows that the rule RS can detect 6 out of 10 attack attempts
in Fig. 5(b). This is due to the fact that the first four attempts
last less than 5 s, i.e., the minimum time required to trigger
the rule itself. Furthermore, Syrius requires an execution time
equal to ∼612 s, as shown in Fig. 9(b). A large portion of 𝜏 is
spent to implement the attack variation. In particular, given the
input anomaly, Syrius captures a series of related packets, by
varying some feature evaluations. These are then used to refine
the seed rule by reducing the false negative rate, ensuring that
the detection rate of the rule remains unchanged. In this specific
case, as previously described, the over-specified seed rule has
been changed by removing only window:512. Such an operation
cannot justify such high latency even in cases where the anomaly
to be modeled leads to the generation of an all-too-simple rule.

• Fig. 9(a) highlights that Anomaly2Sign outperforms Syrius in
the DR achieved as it can detect all attack attempts (AD = TA
in Eq. (4)). The detection rate achieved by the rule RA2S is
obtained according to the capability of Anomaly2Sign in gen-
erating Suricata rules on the basis of actual baseline data. In
fact, the threshold has been evaluated with ∼1500 malicious
samples per second because this setting exactly reflects the dis-
tribution of anomalous samples captured as input by both al-
gorithms. Fig. 9(b) shows that Anomaly2Sign generates the rule
in ∼1.5 s, resulting in a marked improvement in execution time
over Syrius. As expected, this result confirms the goodness of
time performance discussed in Section 6.1. From this perspective,
Anomaly2Sign is more advantageous than Syrius because in ap-
plication contexts, it is important to make cyber threat response
time efficient with tools that can provide very accurate feedback
in a very short time.

7. Technique feasibility

This study focused on the application of Anomaly2Sign against flood
attack types due to their widespread study in the current literature.
Nevertheless, if the input baseline D is capable of accurately modeling
other types of DoS/DDoS attacks, the proposed algorithm can be eas-
ily adapted, identifying the peculiar features of the generic anomaly
to make them part of the feature selection phase implemented by
Anomaly2Sign. This aims at converting such features into keywords
of the generic Suricata rule. The relationships between features that
determine the sample class will then be inferred from the DT which
will be appropriately tuned at run-time to ensure the generation of
a minimal ruleset but at the same time with a high detection rate.
In general, the necessary condition for Anomaly2Sign to continue to
work is that the Suricata syntax (or equivalent network-based IDPS sys-
tems) provides keywords that appropriately identify generic anomaly

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
Fig. 9. Syrius and Anomaly2Sign performance comparison.
features. As a final point, the proposed contribution can effectively
generate Suricata rules comparable in terms of DR with other NIDPS,
such as Snort, taking advantage of the high interpretability of the DT.
Furthermore, the generation process is very fast because the ML model
leveraged for classification purposes is more stable and less complex
compared to other ML models belonging to other learning paradigms,
such as deep learning.

8. Conclusions

The rapid growth of attack vectors such as DoS/DDoS has in-
creased the demand for detection techniques that work effectively
independently of the application context. In this paper, we proposed
Anomaly2Sign, which addresses DoS/DDoS detection through the au-
tomatic generation of Suricata rules through an optimal decision tree
in the sense of detection rate and minimal number of decision rules
produced. The experiments carried out in our paper showed that among
the various ML algorithms compared, the decision tree performs the
best in terms of timing performance. Such a result is paramount for
ensuring a rapid rule generation process. Furthermore, the DT lever-
aged by Anomaly2Sign outperformed the compared ML classifiers from
the point of view of the classification scores achieved as both the
F1 score and the AUC that remained in the range of 99.7%–99.9%.
To definitively prove the advantage of selecting the DT model, the
AIC was evaluated to point out its complexity, obtaining a very low
value in all the cases examined. As a final experiment, we compared
Anomaly2Sign with Syrius, i.e., a state-of-the-art automatic generator
of NIDPS rules, obtaining a better detection rate for different DoS/DDoS
attack scenarios and a significantly lower rule generation time. Among
possible future directions of this research, the applicability of the
proposed system will be evaluated in use cases where the anomalies
to be detected are characterized by a large volume of traffic in a short
time frame, such as brute-force SSH or FTP attacks, as well as other
types of DoS/DDoS assaults.

CRediT authorship contribution statement

Antonio Coscia: Validation, Supervision, Conceptualization. Vin-
cenzo Dentamaro: Validation, Supervision, Methodology, Formal anal-
ysis. Stefano Galantucci: Writing – review & editing, Writing – original
draft, Methodology, Formal analysis. Antonio Maci: Writing – review
& editing, Writing – original draft, Software, Methodology, Investi-
gation, Data curation, Conceptualization. Giuseppe Pirlo: Validation,
Supervision, Project administration.
17
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported in part by the Fondo Europeo di Sviluppo
Regionale Puglia Programma Operativo Regionale (POR) Puglia 2014-
2020-Axis I-Specific Objective 1a-Action 1.1 (Research and
Development)-Project Title: CyberSecurity and Security Operation Cen-
ter (SOC) Product Suite by BV TECH S.p.A., under Grant CUP/CIG
B93G18000040007.

References

[1] Arora Himanshu, Manglani Tanuj, Bakshi Geetanjli, Choudhary Shikha. Cyber
security challenges and trends on recent technologies. In: 2022 6th international
conference on computing methodologies and communication. IEEE; 2022, p.
115–8.

[2] Li Yuchong, Liu Qinghui. A comprehensive review study of cyber-attacks
and cyber security; emerging trends and recent developments. Energy Rep
2021;7:8176–86.

[3] DDoS attack trends for 2023 Q1. https://blog.cloudflare.com/ddos-threat-report-
2023-q1/.

[4] Rios Ana Laura Gonzalez, Li Zhida, Bekshentayeva Kamila, Trajković Ljiljana.
Detection of denial of service attacks in communication networks. In: 2020 IEEE
international symposium on circuits and systems. IEEE; 2020, p. 1–5.

[5] Chaudhari Rutika S, Talmale GR. A review on detection approaches for dis-
tributed denial of service attacks. In: 2019 international conference on intelligent
sustainable systems. IEEE; 2019, p. 323–7.

[6] Azeez Nureni Ayofe, Bada Taiwo Mayowa, Misra Sanjay, Adewumi Adewole, der
Vyver Charles Van, Ahuja Ravin. Intrusion detection and prevention systems: An
updated review. In: Data management, analytics and innovation: proceedings of
ICDMAI 2019, vol. 1, 2020, p. 685–96.

[7] Snortorg. Snort - network intrusion detection & prevention system. [Online]
Available at https://www.snort.org/.

[8] Suricata. [Online] Available at https://suricata.io/.
[9] Waleed Abdul, Jamali Abdul Fareed, Masood Ammar. Which open-source IDs?

snort, suricata or zeek. Comput Netw 2022;213:109116.

http://refhub.elsevier.com/S2214-2126(24)00039-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb1
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb2
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb2
https://blog.cloudflare.com/ddos-threat-report-2023-q1/
https://blog.cloudflare.com/ddos-threat-report-2023-q1/
https://blog.cloudflare.com/ddos-threat-report-2023-q1/
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb4
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb5
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb6
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb6
https://www.snort.org/
https://suricata.io/
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb9
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb9
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb9

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
[10] Bada G, Nabare W, Quansah D. Comparative analysis of the performance of
network intrusion detection systems: Snort suricata and bro intrusion detection
systems in perspective. Int J Comput Appl 2020;176(40):39–44.

[11] Fadhilah Dede, Marzuki Marza Ihsan. Performance analysis of IDs snort and IDs
suricata with many-core processor in virtual machines against DoS/DDoS attacks.
In: 2020 2nd international conference on broadband communications, wireless
sensors and powering. IEEE; 2020, p. 157–62.

[12] Sarker Iqbal H, Furhad Md Hasan, Nowrozy Raza. Ai-driven cybersecurity: An
overview, security intelligence modeling and research directions. SN Comput Sci
2021;2:1–18.

[13] Shaukat Kamran, Luo Suhuai, Varadharajan Vijay, Hameed Ibrahim A, Xu Min.
A survey on machine learning techniques for cyber security in the last decade.
IEEE access 2020;8:222310–54.

[14] Nassif Ali Bou, Talib Manar Abu, Nasir Qassim, Dakalbab Fatima Mohamad.
Machine learning for anomaly detection: A systematic review. Ieee Access
2021;9:78658–700.

[15] Aljuhani Ahamed. Machine learning approaches for combating distributed
denial of service attacks in modern networking environments. IEEE Access
2021;9:42236–64.

[16] Khalaf Bashar Ahmed, Mostafa Salama A, Mustapha Aida, Mo-
hammed Mazin Abed, Abduallah Wafaa Mustafa. Comprehensive review of
artificial intelligence and statistical approaches in distributed denial of service
attack and defense methods. IEEE Access 2019;7:51691–713.

[17] Gilpin Leilani H, Bau David, Yuan Ben Z, Bajwa Ayesha, Specter Michael,
Kagal Lalana. Explaining explanations: An overview of interpretability of ma-
chine learning. In: 2018 IEEE 5th international conference on data science and
advanced analytics. IEEE; 2018, p. 80–9.

[18] Zhang Yu, Tiňo Peter, Leonardis Aleš, Tang Ke. A survey on neural network
interpretability. IEEE Trans Emerg Top Comput Intell 2021;5(5):726–42.

[19] Stoffi Falco J Bargagli, Cevolani Gustavo, Gnecco Giorgio. Simple models in
complex worlds: Occam’s razor and statistical learning theory. Minds Mach
2022;32(1):13–42.

[20] Mahbooba Basim, Timilsina Mohan, Sahal Radhya, Serrano Martin. Explainable
artificial intelligence (xai) to enhance trust management in intrusion detection
systems using decision tree model. Complexity 2021;2021:1–11.

[21] Zeek. The zeek network security monitor. [Online] Available at https://zeek.org/.
[22] Communityemergingthreatsnet. Emerging Threats - Ruleset. [Online] Available

at https://community.emergingthreats.net/.
[23] Suricata Rules. Suricata Rules. [Online] Available at https://docs.suricata.io/en/

latest/rules/index.html#suricata-rules.
[24] Russell Stuart J. Artificial intelligence a modern approach. Pearson Education,

Inc; 2010.
[25] Costa Vinicius G, Pedreira Carlos E. Recent advances in decision trees: An

updated survey. Artif Intell Rev 2023;56(5):4765–800.
[26] Papamartzivanos Dimitrios, Mármol Félix Gómez, Kambourakis Georgios. Den-

dron: Genetic trees driven rule induction for network intrusion detection systems.
Future Gener Comput Syst 2018;79:558–74.

[27] Tangirala Suryakanthi. Evaluating the impact of gini index and information gain
on classification using decision tree classifier algorithm. Int J Adv Comput Sci
Appl 2020;11(2):612–9.

[28] Mantovani Rafael Gomes, Horváth Tomáš, Cerri Ricardo, Junior Sylvio Barbon,
Vanschoren Joaquin, de Leon Ferreira de Carvalho André Carlos Ponce. An
empirical study on hyperparameter tuning of decision trees. 2018, arXiv preprint
arXiv:1812.02207.

[29] Gohil Maulik, Kumar Sathish. Evaluation of classification algorithms for dis-
tributed denial of service attack detection. In: 2020 IEEE third international
conference on artificial intelligence and knowledge engineering. IEEE; 2020, p.
138–41.

[30] Ramadhan Ilham, Sukarno Parman, Nugroho Muhammad Arief. Comparative
analysis of k-nearest neighbor and decision tree in detecting distributed denial of
service. In: 2020 8th international conference on information and communication
technology. IEEE; 2020, p. 1–4.

[31] Lucky Godswill, Jjunju Fred, Marshall Alan. A lightweight decision-tree algorithm
for detecting DDoS flooding attacks. In: 2020 IEEE 20th international conference
on software quality, reliability and security companion. IEEE; 2020, p. 382–9.

[32] Kareem Mohammed Ibrahim, Jasim Mahdi Nsaif. DDoS attack detection using
lightweight partial decision tree algorithm. In: 2022 international conference on
computer science and software engineering. IEEE; 2022, p. 362–7.

[33] Khare Mrunmayee, Oak Rajvardhan. Real-time distributed denial-of-service
(DDoS) attack detection using decision trees for server performance maintenance.
In: Performance management of integrated systems and its applications in
software engineering. 2020, p. 1–9.

[34] Tinubu CO, Sodiya AS, Ojesanmi OA, Adeleke EO, Adebowale AO. Dt-model: A
classification model for distributed denial of service attacks and flash events. Int
J Inf Technol 2022;14(6):3077–87.

[35] Lakshminarasimman S, Ruswin S, Sundarakantham K. Detecting DDoS attacks
using decision tree algorithm. In: 2017 fourth international conference on signal
18

processing, communication and networking. IEEE; 2017, p. 1–6.
[36] Das Saikat, Agarwal Namita, Shiva Sajjan. DDoS explainer using interpretable
machine learning. In: 2021 IEEE 12th annual information technology, electronics
and mobile communication conference. IEEE; 2021, p. 0001–7.

[37] Ahmim Ahmed, Maglaras Leandros, Ferrag Mohamed Amine, Derdour Makhlouf,
Janicke Helge. A novel hierarchical intrusion detection system based on deci-
sion tree and rules-based models. In: 2019 15th international conference on
distributed computing in sensor systems. IEEE; 2019, p. 228–33.

[38] Mohammadi Sara, Mirvaziri Hamid, Ghazizadeh-Ahsaee Mostafa, Karim-
ipour Hadis. Cyber intrusion detection by combined feature selection algorithm.
J Inf Secur Appl 2019;44:80–8.

[39] Kousar Heena, Mulla Mohammed Moin, Shettar Pooja, Narayan DG. Detection of
DDoS attacks in software defined network using decision tree. In: 2021 10th IEEE
international conference on communication systems and network technologies.
IEEE; 2021, p. 783–8.

[40] Chen Yixin, Pei Jianing, Li Defang. Detpro: A high-efficiency and low-latency
system against DDoS attacks in sdn based on decision tree. In: ICC 2019-2019
IEEE international conference on communications. IEEE; 2019, p. 1–6.

[41] Sridaran R, et al. An sdn-based decision tree detection (DTD) model for detecting
DDoS attacks in cloud environment. Int J Adv Comput Sci Appl 2022;13(7).

[42] Acosta Jaime C, Akbar Monika, Hossain M Shahriar, Rivas Veronica. Automatic
data generation and rule creation for network scanning tools. In: Proceedings of
the future technologies conference. Springer; 2023, p. 536–49.

[43] Vollmer Todd, Alves-Foss Jim, Manic Milos. Autonomous rule creation for
intrusion detection. In: 2011 IEEE symposium on computational intelligence in
cyber security. IEEE; 2011, p. 1–8.

[44] Guruprasad Sunitha, D’Souza Rio. Development of an evolutionary framework for
autonomous rule creation for intrusion detection. In: 2016 IEEE 6th international
conference on advanced computing. IEEE; 2016, p. 534–8.

[45] Kao Chia-Nan, Chang Yung-Cheng, Huang Nen-Fu, Liao I-Ju, Liu Rong-Tai,
Hung Hsien-Wei, Lin Che-Wei. Automatic nids rule generating system for
detecting http-like malware communication. In: 2015 international conference
on intelligent information hiding and multimedia signal processing. IEEE; 2015,
p. 199–202.

[46] Fallahi Naser, Sami Ashkan, Tajbakhsh Morteza. Automated flow-based rule
generation for network intrusion detection systems. In: 2016 24th Iranian
conference on electrical engineering. IEEE; 2016, p. 1948–53.

[47] Alcantara Lucas, Padilha Guilherme, Abreu Rui, d’Amorim Marcelo. Syrius:
Synthesis of rules for intrusion detectors. IEEE Trans Reliab 2021;71(1):370–81.

[48] de Lima Filho Francisco Sales, Silveira Frederico AF, de Medeiros Brito Ju-
nior Agostinho, Vargas-Solar Genoveva, Silveira Luiz F. Smart detection: An
online approach for DoS/DDoS attack detection using machine learning. Secur
Commun Netw 2019;2019:1–15.

[49] Erhan Derya. Boğaziçi university DDoS dataset. 2019, http://dx.doi.org/10.
21227/45m9-9p82.

[50] Hasan Md Mehedi. Buet-ddos. 2021, https://data.mendeley.com/datasets/
bzgf9r36kp/2.

[51] Toldinas Jevgenijus, Venčkauskas Algimantas, Damaševičius Robertas, Gri-
galiūnas Šarūnas, Morkevičius Nerijus, Baranauskas Edgaras. A novel approach
for network intrusion detection using multistage deep learning image recognition.
Electronics 2021;10(15):1854.

[52] Erhan Derya, Özdel Süleyman, Anarim Emin. DDoS detection using statistical
modelling. 2019.

[53] Ali Mohammed Hasan, Jaber Mustafa Musa, Abd Sura Khalil, Rehman Amjad,
Awan Mazhar Javed, Damaševičius Robertas, et al. Threat analysis and dis-
tributed denial of service (DDoS) attack recognition in the Internet of Things
(IoT). Electronics 2022;11(3):494.

[54] Kalkan Kubra, Gur Gurkan, Alagoz Fatih. Defense mechanisms against DDoS
attacks in sdn environment. IEEE Commun Mag 2017;55(9):175–9.

[55] Gupta Brij B, Dahiya Amrita. Distributed denial of service (DDoS) attacks:
classification, attacks, challenges and countermeasures. CRC Press; 2021.

[56] Anagnostopoulos Marios. Amplification DoS attacks. In: Encyclopedia of
cryptography, security and privacy. Springer; 2020, p. 1–3.

[57] Vishnu NS, Batth RanbirSingh, Singh Gursharan. Denial of service: types, tech-
niques, defence mechanisms and safe guards. In: 2019 international conference
on computational intelligence and knowledge economy. IEEE; 2019, p. 695–700.

[58] Erhan Derya, Anarim Emın. Hybrid DDoS detection framework using matching
pursuit algorithm. IEEE Access 2020;8:118912–23.

[59] Thabtah Fadi, Hammoud Suhel, Kamalov Firuz, Gonsalves Amanda. Data imbal-
ance in classification: Experimental evaluation. Inform Sci 2020;513:429–41.

[60] Wheelus Charles, Bou-Harb Elias, Zhu Xingquan. Tackling class imbalance in
cyber security datasets. In: 2018 IEEE international conference on information
reuse and integration. IEEE; 2018, p. 229–32.

[61] Maci Antonio, Santorsola Alessandro, Coscia Antonio, Iannacone Andrea. Un-
balanced web phishing classification through deep reinforcement learning.
Computers 2023;12(6):118.

[62] Gupta Neha, Jindal Vinita, Bedi Punam. Cse-ids: Using cost-sensitive deep
learning and ensemble algorithms to handle class imbalance in network-based

intrusion detection systems. Comput Secur 2022;112:102499.

http://refhub.elsevier.com/S2214-2126(24)00039-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb10
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb11
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb12
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb13
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb13
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb13
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb13
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb13
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb14
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb15
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb16
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb16
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb16
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb16
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb16
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb16
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb16
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb17
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb17
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb17
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb17
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb17
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb17
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb17
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb18
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb19
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb20
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb20
https://zeek.org/
https://community.emergingthreats.net/
https://docs.suricata.io/en/latest/rules/index.html#suricata-rules
https://docs.suricata.io/en/latest/rules/index.html#suricata-rules
https://docs.suricata.io/en/latest/rules/index.html#suricata-rules
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb24
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb24
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb24
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb25
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb26
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb27
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb27
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb27
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb27
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb27
http://arxiv.org/abs/1812.02207
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb29
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb30
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb31
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb32
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb33
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb34
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb35
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb35
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb35
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb35
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb35
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb36
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb37
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb38
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb38
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb38
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb38
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb38
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb39
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb39
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb39
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb39
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb39
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb39
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb39
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb40
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb40
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb40
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb40
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb40
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb41
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb41
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb41
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb42
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb42
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb42
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb42
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb42
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb43
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb43
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb43
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb43
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb43
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb44
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb44
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb44
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb44
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb44
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb45
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb46
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb46
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb46
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb46
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb46
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb47
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb47
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb47
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb48
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb48
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb48
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb48
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb48
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb48
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb48
http://dx.doi.org/10.21227/45m9-9p82
http://dx.doi.org/10.21227/45m9-9p82
http://dx.doi.org/10.21227/45m9-9p82
https://data.mendeley.com/datasets/bzgf9r36kp/2
https://data.mendeley.com/datasets/bzgf9r36kp/2
https://data.mendeley.com/datasets/bzgf9r36kp/2
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb51
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb51
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb51
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb51
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb51
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb51
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb51
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb52
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb52
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb52
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb53
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb53
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb53
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb53
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb53
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb53
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb53
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb54
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb54
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb54
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb55
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb55
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb55
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb56
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb56
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb56
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb57
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb57
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb57
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb57
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb57
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb58
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb58
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb58
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb59
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb59
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb59
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb60
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb60
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb60
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb60
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb60
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb61
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb61
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb61
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb61
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb61
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb62
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb62
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb62
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb62
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb62

Journal of Information Security and Applications 82 (2024) 103736A. Coscia et al.
[63] Telikani Akbar, Gandomi Amir H, Choo Kim-Kwang Raymond, Shen Jun. A cost-
sensitive deep learning-based approach for network traffic classification. IEEE
Trans Netw Serv Manag 2021;19(1):661–70.

[64] Elhassan T, Aljurf M. Classification of imbalance data using tomek link (t-link)
combined with random under-sampling (RUS) as a data reduction method. Global
J Technol Optim S 2016;1:2016.

[65] Zhang Yan-Ping, Zhang Li-Na, Wang Yong-Cheng. Cluster-based majority
under-sampling approaches for class imbalance learning. In: 2010 2nd IEEE
international conference on information and financial engineering. IEEE; 2010,
p. 400–4.

[66] Chawla Nitesh V, Bowyer Kevin W, Hall Lawrence O, Philip Kegelmeyer W.
Smote: Synthetic minority over-sampling technique. J Artif Intell Res
2002;16:321–57.

[67] Dentamaro Vincenzo, Impedovo Donato, Pirlo Giuseppe. Licic: Less important
components for imbalanced multiclass classification. Information 2018;9(12):317.

[68] Grandini Margherita, Bagli Enrico, Visani Giorgio. Metrics for multi-class
classification: An overview. 2020, arXiv preprint arXiv:2008.05756.

[69] Narkhede Sarang. Understanding AUC-ROC curve. Towards Data Sci.
2018;26(1):220–7.

[70] Cavanaugh Joseph E, Neath Andrew A. The akaike information criterion:
Background, derivation, properties, application, interpretation, and refinements.
Wiley Interdiscip Rev: Comput Stat 2019;11(3):e1460.

[71] Qi Jun, Du Jun, Siniscalchi Sabato Marco, Ma Xiaoli, Lee Chin-Hui. On mean
absolute error for deep neural network based vector-to-vector regression. IEEE
Signal Process Lett 2020;27:1485–9.

[72] Murphy Kevin P. Machine learning: A probabilistic perspective. MIT Press; 2012.
[73] Guliyev Namig J, Ismailov Vugar E. On the approximation by single hidden layer

feedforward neural networks with fixed weights. Neural Netw 2018;98:296–304.
[74] Syrius. 2022. https://github.com/STAR-RG/syrius. [Available Online and

Accessed on 01 March 2023].
[75] Singh Jagdeep, Behal Sunny. Detection and mitigation of DDoS attacks in SDN:

A comprehensive review, research challenges and future directions. Comput Sci
Rev 2020;37:100279.

[76] Ahda Aidil, Wulandari Citra, Husellvi Hanifa Putri, Alhuda Marcello Yasta,
Reda Muhammad, Zahwa Putri, Ananda Sherly. Information security im-
plementation of DDoS attack using hping3 tools. JComce-J Comput Sci
2023;1(4).

[77] Tampati Ihsan Fadli, Setyawan Faizal Gani, Sejati Wiyar Wilujengning, Kar-
dian Aqwam Rosadi. Comparative analysis of CPU performance on freebsd 64-bit
and redhat 64-bit operating system against denial of service (DoS) using hping3.
CESS (J Comput Eng Syst Sci) 8(1):209–19.

[78] Pedregosa Fabian, Varoquaux Gaël, Gramfort Alexandre, Michel Vincent,
Thirion Bertrand, Grisel Olivier, et al. Scikit-learn: Machine learning in python.
the J Mach Learn Res 2011;12:2825–30.

[79] Pure python parser for snort/suricata rules. 2022, https://github.com/m-chrome/
py-suricataparser. [Available Online and Accessed on 18 January 2022].

Antonio Coscia received the degree in Computer Science
from the University of Bari, Italy, in 2004. During his
professional career he worked in telecommunications and
defense industries as a Software Engineer. He currently
works as a Team Leader and Cyber Security Software Engi-
neer for the R&D Cyber Lab of BV Tech S.p.A, in Grottaglie,
Italy. His main research interests include Network Intrusion
Detection Prevention Systems, Application Layer security,
Evolutionary computations.

Vincenzo Dentamaro is an assistant professor at the Uni-
versity of Bari. He received the degree in computer science
from the Department of Computer Science, University of
Bari, Italy, and the M.Sc. degree in machine learning from
the Georgia Institute of Technology, Atlanta, GA, USA. He
received a Ph.D. in computer science from the University of
Bari with a scholarship offered by InnovaPuglia S.p.A.. He
was a Software Engineer at Johnson Controls Inc.; an Intern
at IBM Rome; and the CEO and CTO Nextome S.R.L. He is
currently publishing in various pattern recognition journals
and conferences. He is also a Reviewer of IEEE Access,
Elsevier Pattern Recognition Journal, MDPI Sensor, MDPI
Information, and so on. He has previously published about
indoor positioning and localization techniques on Microsoft
Research Journal and holds two international patents on
localization technologies. His awards and honors include the
1st prize Busan Metropolitan City, South Korea, in the Seal
of Excellence European Commission; IBM’s Global Mobile
19
Innovator Tournament Award at the Mobile World Congress;
and the MIT Technology Review award.

Stefano Galantucci received the M.Sc. degree (Hons.) in
cybersecurity, defending a thesis on the generation of mul-
tiple cryptographic keys equivalent to each other. He is
currently pursuing the Ph.D. degree in computer science
with the University of Bari. He is involved in research in
the areas of cybersecurity, cryptography, and biometrics.
He is an adjunct lecturer teaching Cryptography at the
Master’s Degree in Computer Security at the University of
Bari. He is also a Reviewer for some Journals, including
IEEE Transactions on Information Forensics and Security,
Computers & Security and many others.

Antonio Maci received the M.Sc. degree (Hons.) in Automa-
tion Engineering from the Polytechnic University of Bari,
Bari, Italy, in 2022. He is currently pursuing the second
level Master in Artificial Intelligence and Data Science with
the University of Calabria, Rende, Italy. During his studies,
he developed transversal skills and knowledge on Cyber
Security, working firstly as a SOC Analyst and currently
as a Cyber Security Software Specialist for the R&D Cyber
Laboratory of BV TECH S.p.A, Grottaglie, Italy. His main
research interests include Malware Analysis, Artificial Intel-
ligence algorithms for Network Security and Cyber Physical
Systems Safety.

Giuseppe Pirlo received the degree (cum laude) in com-
puter science from the Department of Computer Science,
University of Bari, Italy, in 1986. Since 1986, he has been
carrying out research in the field of computer science
and neuroscience, signal processing, handwriting process-
ing, automatic signature verification, biometrics, pattern
recognition, and statistical data processing. Since 1991, he
has been an Assistant Professor with the Department of
Computer Science, University of Bari, where he is currently
a Full Professor. He developed several scientific projects and
authored more than 250 articles on international journals,
scientific books, and proceedings. He is a member of the
Governing Board of Consorzio Interuniversitario Nazionale
per l’Informatica (CINI), the Governing Board of the So-
cieta Italiana di e-Learning, the e-learning Committee of
the University of Bari, the Gruppo Italiano Ricercatori in
Pattern Recognition, the International Association of Pattern
Recognition, the Stati Generali dell’Innovazione, and the
Gruppo Ingegneria Informatica. He was the General Chair
of the International Workshop on Emerging Aspects in
Handwriting Signature Processing, Naples, in 2013, and
the International Workshop on Image-Based Smart City
Applications, Genoa, in 2015; and the General Co-Chair of
the International Conference on Frontiers in Handwriting
Recognition, Bari, in 2012. He was an Editor of the Special
Issue Handwriting Recognition and Other PR Applications
of the Pattern Recognition journal in 2014 and the Special
Issue Handwriting Biometrics of the IET Biometrics journal
in 2014. He was a Guest Editor of the Special Issue of
Journal of e-Learning and Knowledge Society: Steps Toward
the Digital Agenda: Open Data to Open Knowledge (Je-
LKS) in 2014. He is also an Associate Editor of the IEEE
Transactions on Human–Machine Systems. He also serves
as a Reviewer for many international journals, including
the IEEE Transactions on Pattern Analysis and Machine
Intelligence, the IEEE Transactions on Fuzzy Systems, IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
the IEEE Transactions on Evolutionary Computation, the
IEEE Transactions on Image Processing, the IEEE Trans-
actions on Information Forensics and Security, the Pattern
Recognition, the International Journal on Document Analy-
sis and Recognition, and the Information Processing Letters.
He is also a Guest Co-Editor of the Special Issue of the
IEEE Transactions on Human–Machine Systems on Drawing
and Handwriting Processing for User-Centered Systems. He
is also an editor of several books. He was a Reviewer in
the scientific committee and program committee of many
international conferences in the field of computer science,
pattern recognition, and signal processing, such as ICPR,
ICDAR, ICFHR, IWFHR, ICIAP, VECIMS, and CISMA.

http://refhub.elsevier.com/S2214-2126(24)00039-5/sb63
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb63
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb63
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb63
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb63
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb64
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb64
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb64
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb64
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb64
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb65
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb65
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb65
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb65
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb65
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb65
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb65
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb66
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb66
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb66
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb66
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb66
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb67
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb67
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb67
http://arxiv.org/abs/2008.05756
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb69
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb69
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb69
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb70
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb70
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb70
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb70
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb70
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb71
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb71
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb71
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb71
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb71
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb72
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb73
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb73
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb73
https://github.com/STAR-RG/syrius
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb75
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb75
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb75
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb75
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb75
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb76
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb76
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb76
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb76
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb76
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb76
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb76
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb77
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb77
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb77
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb77
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb77
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb77
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb77
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb78
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb78
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb78
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb78
http://refhub.elsevier.com/S2214-2126(24)00039-5/sb78
https://github.com/m-chrome/py-suricataparser
https://github.com/m-chrome/py-suricataparser
https://github.com/m-chrome/py-suricataparser

	Automatic decision tree-based NIDPS ruleset generation for DoS/DDoS attacks
	Introduction
	Background
	Network Intrusion Detection and Prevention System
	Suricata

	Decision Tree
	Hyperparameters

	Related Work
	Decision Tree for DoS/DDoS detection
	Methodologies for automatic NIDPS rule generation

	The proposed contribution: Anomaly2Sign
	Data preparation
	Feature selection

	Rule generation
	From Decision Tree rules to Suricata rules
	Rule-building phase

	Anomaly2Sign summary

	Experimental Setup
	Datasets used description
	BOUN
	BUET
	Strategies adopted for data pre-processing

	Metrics used to evaluate model performance
	Conventional classification metrics
	Model complexity

	Decision Tree model employed
	Algorithms selected for benchmark
	Machine learning classifiers
	Methodology compared for automatic Suricata rules generation: Syrius
	Implementation details and hardware settings used

	Results and Discussion
	Timing performance
	Training time
	Testing time

	Classification performance
	Model complexity analysis
	Effectiveness of DT hyperparameter tuning to generate the optimal ruleset
	Automatic rule generation comparison

	Technique feasibility
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

